Skip to main content
Log in

Animal models of anxiety disorders

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Animal models may be useful in investigating the fundamental mechanisms underlying psychiatric disorders, and may contribute to the development of new medications. A computerized literature search was used to collect studies on recently developed animal models for anxiety disorders. Particular cognitive-affective processes (eg, fear conditioning, control of stereotypic movements, social submissiveness, and trauma sensitization) may be particularly relevant to understanding specific anxiety disorders. Delineation of the phenomenology and psychobiology of these processes in animals leads to a range of useful models of these conditions. These models demonstrate varying degrees of face, construct, and predictive validity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Shekhar A, McCann UD, Meaney MJ, et al.: Summary of a National Institute of Mental Health workshop: developing animal models of anxiety disorders. Psychopharmacology 2001, 157:327–339.

    Article  PubMed  CAS  Google Scholar 

  2. Martin P: Animal models sensitive to anti-anxiety agents. Acta Psychiatr Scand 1998, 98:74–80.

    Google Scholar 

  3. Pellow S, Chopin P, File SE, Briley M: Validation of open, closed arm entries in an elevated-plus maze as a measure of anxiety in the rat. J Neurosci Methods 1985, 14:149–167.

    Article  PubMed  CAS  Google Scholar 

  4. Treit D: Animal models for the study of anti-anxiety agents: a review. Neurosci Biobehav Rev 1985, 9:203–222.

    Article  PubMed  CAS  Google Scholar 

  5. Weiss JM, Simson PG: Depression in an animal model: Focus on the locus coeruleus. In Antidepressants and Receptor Function. Edited by Weiss JM, Simson PG. New York: Wiley; 1986:191–216.

    Google Scholar 

  6. Mineka S, Zinbarg R: Conditioning and ethological models of anxiety disorders: stress in dynamic context anxiety models. The 43rd Annual Nebraska Symposium on Motivation. Lincoln: University of Nebraska Press; 1996:135–211.

    Google Scholar 

  7. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, edn 4. Washington, DC: American Psychiatric Association Press; 1994.

    Google Scholar 

  8. Garvey MJ, Noyes R Jr, Woodman C: The association of urinary 5-hydroxyindoleacetic acid and vanillylmandelic acid in patients with generalized anxiety. Neuropsychobiology 1995, 31:6–9.

    Article  PubMed  CAS  Google Scholar 

  9. Tiihonen J, Kuikka J, Rasanen P et al.: Central benzodiazepine receptor binding and distribution in generalized anxiety disorder: a fractal analysis. Mol Psychiatry 1997, 2:463–471.

    Article  PubMed  CAS  Google Scholar 

  10. Ballenger JC: Current treatments of the anxiety disorders in adults. Biol Psychiatry 1999, 46:1579–1594.

    Article  PubMed  CAS  Google Scholar 

  11. Rickels K, Rynn MA: What is generalized anxiety disorder? J Clin Psychiatry 2001, 62(suppl):4–12.

    PubMed  Google Scholar 

  12. Prut L, Belzung C: The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 2003, 463:3–33.

    Article  PubMed  CAS  Google Scholar 

  13. Sanchez C: Stress-induced vocalization in adult animals: a valid model of anxiety? Eu J Pharmacol 2003, 463:133–143.

    Article  CAS  Google Scholar 

  14. Takahashi LK, Peng Ho S, Livanov V, et al.: Antagonism of CRF2 receptors produces anxiolytic behavior in animal models of anxiety. Brain Research 2001, 902:135–142.

    Article  PubMed  CAS  Google Scholar 

  15. Zorilla EP, Valdez GR, Nozulak J, et al.: Effects of antalarmin, a CRF type 1 receptor antagonist, on anxiety-like behavior and motor activation in the rat. Brain Research 2002, 952:188–199.

    Article  Google Scholar 

  16. Zhuang X, Gross C, Santarelli L, et al.: Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology 1999, 21:52S-60S. A study in which a 5-HT1A genetic knockout model was developed, emphasizing the importance of the 5-HT1A receptor in anxiety. 5-HT1A KOs showed more anxious behavior in the elevated plus maze than controls. This report emphasizes the importance of the amygdala NMDA and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors in fear-learning and fear loss. N-methyl-D-aspartate and AMPA receptors appear important for fear-learning, whereas AMPA receptors also play an important role in fear-expression.

    PubMed  CAS  Google Scholar 

  17. Sibille E, Pavlides C, Benke D, Toth M: Genetic inactivation of the serotonin 1A receptor in mice results in downregulation of major GABA(A) receptor alpha subunits, reduction of GABA(A) receptor binding, and benzodiazepine-resistant anxiety. J Neurosci 2000, 20:2758–2765.

    PubMed  CAS  Google Scholar 

  18. Olivier B, Pattij T, Wood SJ, et al.: The 5-HT1A receptor knockout mouse and anxiety. Behav Pharmacol 2001, 12:439–450.

    PubMed  CAS  Google Scholar 

  19. Hogg S: A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav 1996, 54:21–30.

    Article  PubMed  CAS  Google Scholar 

  20. Silva RCB, Brandao ML: Acute and chronic effects of gepirone and fluoxetine in rats tested in the elevated plus-maze: an ethological analysis. Pharmacol Biochem Behav 2000, 65:209–216.

    Article  PubMed  CAS  Google Scholar 

  21. Goodman WK, McDougle CJ, Price LH, et al.: Beyond the serotonin hypothesis: a role for dopamine in some forms of obsessive compulsive disorder? J Clin Psychiatry 1999, 51:S36-S43.

    Google Scholar 

  22. Harvey BH, Brink CB, Seedat S, Stein DJ: Defining the neuromolecular action of myo-inositol: application to obsessive compulsive disorder. Prog Neuro Psychopharmacol Biol Psychiatry 2002, 26:21–32.

    Article  CAS  Google Scholar 

  23. Vythilingum B, Cartwright C, Hollander E: Pharmacotherapy of obsessive-compulsive disorder: experience with the selective serotonin reuptake inhibitors. Int Clin Psychopharmacol 2000, 15(suppl):7–13.

    Google Scholar 

  24. McDougle CJ, Epperson CN, Pelton GH, et al.: A double-blind, placebo-controlled study of risperidone addition in serotonin reuptake inhibitor-refractory obsessive-compulsive disorder. Arch Gen Psychiatry 2000, 57:794–801. This report emphasizes the importance of the amygdala NMDA and AMPA receptors in fear-learning and fear loss. N-methyl-D-aspartate and AMPA receptors appear important for fear-learning, whereas AMPA receptors also play an important role in fear-expression.

    Article  PubMed  CAS  Google Scholar 

  25. Leonard H, Swedo SE: Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS). Int J Neuropsychopharmacol 2001, 4:191–198.

    Article  PubMed  CAS  Google Scholar 

  26. Powell SB, Newman HA, Pendergast JF, Lewis MH: A rodent model of spontaneous stereotypy: initial characterization of developmental, environmental, and neurobiologic factors. Physiol Behav 1999, 66:355–363. This study reported the natural stereotypic behaviors emitted by deer mice, such as jumping and backward somersaulting, and suggested that natural stereotypic behaviors may be modulated by neurotransmitter systems different from drug-induced stereotypy. This report emphasizes the importance of the amygdala NMDA and AMPA receptors in fear-learning and fear loss. N-methyl-D-aspartate and AMPA receptors appear important for fear-learning, whereas AMPA receptors also play an important role in fear-expression.

    Article  PubMed  CAS  Google Scholar 

  27. Presti MF, Powell SB, Lewis MH: Dissociation between spontaneously emitted and apomorphine-induced stereotypy in Peromyscus maniculatus bairdii. Physiol Behav 2002, 75:347–353.

    Article  PubMed  CAS  Google Scholar 

  28. Turner CA, Yang MC, Lewis MH: Environmental enrichment: effects on stereotyped behavior and regional neuronal metabolic activity. Brain Res 2002, 938:15–21.

    Article  PubMed  CAS  Google Scholar 

  29. Presti MF, Mikes HM, Lewis MH: Selective blockade of spontaneous motor stereotypy via intrastriatal pharmacological manipulation. Pharmacol Biochem Behav 2003, 74:833–839.

    Article  PubMed  CAS  Google Scholar 

  30. Rapoport J: An animal model of obsessive compulsive disorder. Arch Gen Psychiatry 1992, 49:517–521. This study reported that ALD, an animal grooming disorder, is reminiscent of OCD. Obsessive-compulsive disorder-effective pharmacotherapy was also effective in treating ALD symptoms. This report emphasizes the importance of the amygdala NMDA and AMPA receptors in fearlearning and fear loss. N-methyl-D-aspartate and AMPA receptors appear important for fear-learning, whereas AMPA receptors also play an important role in fear-expression.

    PubMed  CAS  Google Scholar 

  31. Szechtman H, Sulis W, Eilam D: Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive-compulsive disorder (OCD). Behav Neurosci 1998, 112:1475–1485.

    Article  PubMed  CAS  Google Scholar 

  32. Tizabi Y, Louis VA, Taylor CT, et al.: Effect of nicotine on quinpirole-induced checking behavior in rats: implications for obsessive-compulsive disorder. Biol Psychiatry 2002, 51:164–171.

    Article  PubMed  CAS  Google Scholar 

  33. Joel D, Doljansky J: Selective alleviation of compulsive lever-pressing in rats by D1 but not D2, blockade: possible implications for the involvement of D1 receptors in obsessive-compulsive disorder. Neuropsychopharmacol 2003, 28:77–85.

    Article  CAS  Google Scholar 

  34. Stein DJ, Seedat S, Potocnik F: Hoarding: a review. Isr J Psychiatry Relat Sci 1999, 36:35–46.

    PubMed  CAS  Google Scholar 

  35. Hugo C, Seier J, Mdhluli C, et al.: Fluoxetine decreases stereotypic behavior in primates. Prog Neuropsychopharmacol Biol Psychiatry 2003, 27:639–643. This report emphasizes the importance of the amygdala NMDA and AMPA receptors in fear-learning and fear loss. N-methyl-D-aspartate and AMPA receptors appear important for fear-learning, whereas AMPA receptors also play an important role in fear-expression.

    Article  PubMed  CAS  Google Scholar 

  36. Ernst AM, Smelik PG: Site of action of dopamine and apomorphine on compulsive gnawing behavior in rats. Experientia 1966, 22:837–838.

    Article  PubMed  CAS  Google Scholar 

  37. Dickson PR, Lang CG, Hinton SC, Kelley AE: Oral stereotypy induced by amphetamine microinjection into striatum: an anatomical mapping study. Neuroscience 1994, 61:81–91.

    Article  PubMed  CAS  Google Scholar 

  38. Harvey BH, Scheepers AS, Brand L, Stein DJ: Chronic inositol increases striatal D2 receptors but does not modify dex-amphetamine-induced motor behavior: relevance to obsessive compulsive disorder. Pharmacol Biochem Behav 2001, 68:245–253.

    Article  PubMed  CAS  Google Scholar 

  39. Perlmutter SJ, Leitman S, Garvey MA, et al.: Therapeutic plasma exchange and intravenous immunoglobulin for obsessivecompulsive disorder and tic disorders in childhood. Lancet 1999, 354:1153–1158.

    Article  PubMed  CAS  Google Scholar 

  40. Taylor JR, Morshed SA, Parveen S, et al.: An animal model of Tourette’s syndrome. Am J Psychiatry 2002, 159:657–660.

    Article  PubMed  Google Scholar 

  41. Abelson JL, Glitz D, Cameron OG, et al.: Endocrine, cardiovascular and behavioral responses to clonidine in patients with panic disorder. Biol Psychiatry 1992, 32:18–25.

    Article  PubMed  CAS  Google Scholar 

  42. Coplan JD, Pine D, Papp LA, et al.: Noradrenergic/HPA-axis uncoupling in panic disorder. Neuropsychopharmacol 1995, 13:65–73.

    Article  CAS  Google Scholar 

  43. Coplan JD, Papp LA, Pine DS, et al.: Clinical improvement with fluoxetine therapy and noradrenergic function in patients with panic disorders. Arch Gen Psychiatry 1997, 54:643–648.

    PubMed  CAS  Google Scholar 

  44. Boyer W: Serotonin uptake inhibitors are superior to imipramine and alprazolam in alleviating panic attacks: a metaanalysis. Int Clin Psychopharmacol 1995, 10:45–49.

    Article  PubMed  CAS  Google Scholar 

  45. Goddard AW, Woods SW, Sholomkas DE, et al.: Effects of the serotonin reuptake inhibitor fluvoxamine on yohimbineinduced anxiety in panic disorder. Psychiatry Res 1993, 48:119–133.

    Article  PubMed  CAS  Google Scholar 

  46. Sheehan DV: Current concepts in the treatment of panic disorder. J Clin Psychiatry 1999, 60:16–21.

    PubMed  CAS  Google Scholar 

  47. Gorman JM, Kent JM, Sullivan GM, Coplan JD: Neuroanatomical hypothesis of panic disorder, revised. Am J Psychiatry 2000, 157:493–505.

    Article  PubMed  CAS  Google Scholar 

  48. LeDoux JE, Iwata J, Cicchetti P, Reis DJ: Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 1988, 8:2517–2519.

    PubMed  CAS  Google Scholar 

  49. LeDoux J: Fear and the brain: where have we been, and where are we going. Biol Psychiatry 1998, 44:1229–1238.

    Article  PubMed  CAS  Google Scholar 

  50. Davis M: Are different parts of the extended amygdala involved in fear versus anxiety? Biol Psychiatry 1998, 44:1239–1247.

    Article  PubMed  CAS  Google Scholar 

  51. Hilton SM, Zybrozyna AW: Amygdaloid region for defense reactions and its efferent pathway to the brainstem. J Physiol 1963, 165:160–173.

    PubMed  CAS  Google Scholar 

  52. Sanders SK, Shekhar A: Blockade of GABA receptors in the region of the anterior basolateral amygdala of rats elicits increases in heart rate and blood pressure. Brain Res 1991, 567:01–110.

    Article  Google Scholar 

  53. Brown P: Physiology of startle phenomena. In Negative Motor Phenomena. Edited by Fahn S, Hallett M, Luders HO, Marsden CD. Philadelphia: Lippincott-Raven Publishers; 1995:273–287.

    Google Scholar 

  54. Cassella JV, Davis M: Sensitization fear conditioning and pharmacological modulation of acoustic startle following lesions of the dorsal periaqueductal gray. Soc Neurosci Abstr 1984, 10:1067.

    Google Scholar 

  55. Jenck F, Moreau J-L, Martin JR: Dorsal periaductal gray-induced aversion as a stimulation of panic anxiety: elements of face and predictive validity. Psychiatry Res 1995, 57:181–191.

    Article  PubMed  CAS  Google Scholar 

  56. Vianna DML, Landeira-Fernandez J, Brandao ML: Dorsolateral and ventral regions of the periaqueductal gray matter are involved in distinct types of fear. Neurosci Biobehav Rev 2001, 25:711–719.

    Article  PubMed  CAS  Google Scholar 

  57. Fendt M, Koch M, Schnitzler HU: Lesions of the central gray block conditioned fear as measured with the potentiated startle paradigm. Behav Brain Res 1996, 74:127–134.

    Article  PubMed  CAS  Google Scholar 

  58. Davis M: Diazepam and flurazepam: effects on conditioned fear as measured with the potentiated startle paradigm. Psychopharmacol 1979, 62:1–7.

    Article  CAS  Google Scholar 

  59. Kehne JH, Cassella JV, Davis M: Anxiolytic effects of buspirone and gepirone in the fear-potentiated startle paradigm. Eur J Pharmacol 1988, 94:8–13.

    CAS  Google Scholar 

  60. Anthony EW, Nevins ME: Anxiolytic effects of N-methyl-Daspartate-associated glycine receptor ligands in the rat potentiated startle test. Eur J Pharmacol 1993, 250:317–324.

    Article  PubMed  CAS  Google Scholar 

  61. Graeff FG, Silveira MCL, Nogueira RL, et al.: Role of the amygdala and periaqueductal gray in anxiety and panic. Behav Brain Res 1993, 58:123–132.

    Article  PubMed  CAS  Google Scholar 

  62. Ballenger JC, Davidson JR, Lecrubier Y, et al.: Consensus statement on panic disorder from the international consensus group on depression and anxiety. J Clin Psychiatry 1998, 59(suppl):47–54.

    PubMed  Google Scholar 

  63. Walker DL, Ressler KJ, Lu KT, Davis M: Facilitation of conditioned fear extinction by systemic administration of intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J Neurosci 2002, 22:2343–2351.

    PubMed  CAS  Google Scholar 

  64. Walker DL, Davis M: The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharmacol Biochemistry Behav 2002, 71:379–392. This report emphasizes the importance of the amygdala NMDA and AMPA receptors in fear-learning and fear loss. N-methyl-D-aspartate and AMPA receptors appear important for fear-learning, whereas AMPA receptors also play an important role in fear-expression.

    Article  CAS  Google Scholar 

  65. Miyamoto Y, Yamada K, Noda Y, et al.: Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor epsilon 4 subunit. J Neurosci 2002, 22:2335–2342.

    PubMed  CAS  Google Scholar 

  66. Walker DL, Davis M: Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in light-enhanced versus fear-potentiated startle. J Neurosci 1997, 17:9375–9383.

    PubMed  CAS  Google Scholar 

  67. Stanek L, Walker DL, Davis M: Amygdala infusion of LY354740, a group II metabotropic receptor agonist, blocks fear-potentiated startle in rats. Soc Neurosci Abstr 2000, 26:2020.

    Google Scholar 

  68. Rogòz Z, Skuza G, Maj J, Danysz W: Synergistic effects of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats. Neuropharmacol 2002, 42:1024–1030.

    Article  Google Scholar 

  69. Harvey BH, Jonker LP, Brand L, et al.: NMDA receptor involvement in imipramine withdrawal-associated effects on swim stress, GABA levels and NMDA receptor binding in rat hippocampus. Life Sci 2002, 71:43–54.

    Article  PubMed  CAS  Google Scholar 

  70. Krystal JH, Sanacora G, Blumberg H, et al.: Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 2002, 7(suppl):S71-S80.

    Article  PubMed  CAS  Google Scholar 

  71. Stewart CA, Reid IC: Antidepressant mechanisms: functional and molecular correlates of excitatory amino acid neurotransmission. Mol Psychiatry 2002 7(suppl_1):S15-S22.

    Article  PubMed  CAS  Google Scholar 

  72. Stein DJ, Westernberg HG, Liebowitz MR: Social anxiety disorder and generalized anxiety disorder: serotonergic and dopaminergic neurocircuitry, J Clin Psychiatry 2002, 63(suppl):12–19.

    PubMed  Google Scholar 

  73. Sapolsky RM, Alberts SC, Altmann J: Hypercortisolism associated with social subordinance or social isolation among wild baboons. Arch Gen Psychiatry 1997, 54:1137–1143. In this study, social affiliation in primates is associated with alterations in hypothalamic-pituitary-adrenal axis function.

    PubMed  CAS  Google Scholar 

  74. Uhde TW, Tancer ME, Gelernter CS, Vittone BJ: Normal urinary free cortisol and postdexamethasone cortisol in social phobia: comparison to normal volunteers. J Affect Disord 1994, 30:155–161.

    Article  PubMed  CAS  Google Scholar 

  75. Grant KA, Shively CA, Nader MA, et al.: Effect of social status on striatal dopamine D2 receptor binding characteristics in cynmolgus monkeys assessed with positron emission tomography. Synapse 1998, 29:80–83.

    Article  PubMed  CAS  Google Scholar 

  76. Schneier FR, Liebowitz MR, Abi-Dargham A, et al.: Low dopamine D2 receptor binding potential in social phobia. Am J Psychiatry 2000, 157:457–459.

    Article  PubMed  CAS  Google Scholar 

  77. Raleigh MJ, Brammer GL, McGuire MT, Yuwiler A: Dominant social status facilitates the behavioral effects of serotonergic agonists. Brain Res 1985, 348:274–282.

    Article  PubMed  CAS  Google Scholar 

  78. Stein DJ, Bouwer C: A neuro-evolutionary approach to the anxiety disorders. J Anxiety Disord 1997, 11:409–429.

    Article  PubMed  CAS  Google Scholar 

  79. Elzinga BM, Bremner JD: Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)? J Affect Disord 2002, 70:1–17.

    Article  PubMed  CAS  Google Scholar 

  80. Yehuda R, Southwick SM, Krystal JH, et al.: Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder. Am J Psychiatry 1993, 150:83–86.

    PubMed  CAS  Google Scholar 

  81. Yehuda R, Siever L, Teicher MH, et al.: Plasma norepinephrine and MHPG concentrations and severity of depression in combat PTSD and major depressive disorder. Biol Psychiatry 1998, 44:56–63.

    Article  PubMed  CAS  Google Scholar 

  82. Pynoos RS, Ritzmann RF, Steinberg AM, et al.: A behavioral animal model of posttraumatic stress disorder featuring repeated exposure to situational reminders. Biol Psychiatry 1996, 39:129–134.

    Article  PubMed  CAS  Google Scholar 

  83. Liberzon I, Krstov M, Young EA: Stress-restress: effects on ACTH and fast feedback. Psychoneuroendocrinol 1997, 22:443–453. In this study, a single exposure to prolonged stress is followed by a reexposure to one of the stressors 7 days later. Animals showed sensitization of the feedback inhibition of the hypothalamic-pituitary-adrenal axis, which corresponds with alterations seen in PTSD.

    Article  CAS  Google Scholar 

  84. Richter-Levin G: Acute and long-term behavioral correlates of underwater trauma-potential relevance to stress and poststress syndromes. Psychiatry Res 1998, 79:73–83.

    Article  PubMed  CAS  Google Scholar 

  85. Adamec RE, Shallow T: Lasting effects on rodent anxiety of a single exposure to a cat. Physiol Behav 1993, 54:101–109.

    Article  PubMed  CAS  Google Scholar 

  86. Cohen H, Zohar J, Matar M: The relevance of differential response to trauma in an animal model of posttraumatic stress disorder. Biol Psychiatry 2003, 53:463–473.

    Article  PubMed  Google Scholar 

  87. Heim C, Nemeroff CB: The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 2001, 49:1023–1039.

    Article  PubMed  CAS  Google Scholar 

  88. Coplan JD, Andrews MW, Rosenblum LA, et al.: Persistent elevations of cerebrospinal fluid concentrations of corticotropinreleasing factor in adult nonhuman primates exposed to early-life stressors: Implications for the pathophysiology of mood and anxiety disorders. Proc Natl Acad Sci U S A 1996, 93:1619–1623.

    Article  PubMed  CAS  Google Scholar 

  89. Yehuda R, Antelman SM: Criteria for evaluating animal models of posttraumatic stress disorder. Biol Psychiatry 1993, 33:479–486. This review differentiates criteria that are essential in putative animal models of PTSD, and will allow them to more closely model human PTSD. Animal models that adhere closest to a set of five criteria will afford them greater value in studies aimed at understanding the neurobiology and pharmacology of the illness.

    Article  PubMed  CAS  Google Scholar 

  90. Liberzon I, Lopez F, Flagel SB, et al.: Differential regulation of hippocampal glucocorticoid receptor mRNA and fast feedback: relevance to post-traumatic stress disorder. Neuroendocrinology 1999, 11:11–17.

    Article  CAS  Google Scholar 

  91. Harvey BH, Naciti C, Brand L, Stein DJ: Endocrine, cognitive and hippocampal/cortical 5HT1A/2A receptor changes evoked by a time dependent sensitisation (TDS) stress model in rats. Brain Res 2003, in press.

  92. Harvey BH, Naciti C, Brand L, Stein DJ: Cognitive and hippocampal. cortical 5-HT1A/2A-receptor changes evoked by a stress-restress paradigm are modulated by ketoconazole and serotonergic-active drugs. Paper presented at The 34th Annual Congress of the International Society for Psychoneuroendocrinology. New York; September 7–9, 2003.

  93. Oosthuizen F, Brand L, Wegener G, et al.: Sustained effects on NO synthase activity, GABA levels, and NMDA receptors in the hippocampus of rats subjected to stress-restress. Paper presented at The 6th Annual Conference of the International Brain Research Organization. Prague; July 10–15, 2003.

  94. Segman RH, Cooper-Kazaz R, Macciardi F, et al.: Association between the dopamine transporter gene and posttraumatic stress disorder. Mol Psychiatry 2002, 7:903–907.

    Article  PubMed  CAS  Google Scholar 

  95. King JA, Abend S, Edwards E: Genetic predisposition and development of posttraumatic stress disorder in an animal model. Biol Psychiatry 2001, 50:231–237. This is the first study in which a genetic, PTSD preclinical model was developed using rats that exhibited helplessness criteria after stress exposure.

    Article  PubMed  CAS  Google Scholar 

  96. van der Kolk BA, Greenberg MS, Orr SP, Pitman RK: Endogenous opioids, stress induced analgesia, and posttraumatic stress disorder. Psychopharmacol Bull 1989, 25:417–421.

    PubMed  Google Scholar 

  97. Golier J, Yehuda R: Neuroendocrine activity and memoryrelated impairments in posttraumatic stress disorder. Dev Psychopathol 1998, 10:857–869.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uys, J.D.K., Stein, D.J., Daniels, W.M.U. et al. Animal models of anxiety disorders. Curr Psychiatry Rep 5, 274–281 (2003). https://doi.org/10.1007/s11920-003-0056-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-003-0056-7

Keywords

Navigation