Skip to main content

Parallel and Scalable Computation and Spatial Dynamics with DNA-Based Chemical Reaction Networks on a Surface

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8727)

Abstract

We propose a theoretical framework that uses a novel DNA strand displacement mechanism to implement abstract chemical reaction networks (CRNs) on the surface of a DNA nanostructure, and show that surface CRNs can perform efficient algorithmic computation and create complex spatial dynamics. We argue that programming molecular behaviors with surface CRNs is systematic, parallel and scalable.

Keywords

  • Cellular Automaton
  • Turing Machine
  • Transition Rule
  • Logic Circuit
  • Strand Displacement

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-11295-4_8
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-11295-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   49.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaver, D.: A universal molecular computer. DNA Based Computers, DIMACS 27, 29–36 (1996)

    Google Scholar 

  2. Bennett, C.H.: The thermodynamics of computation – a review. International Journal of Theoretical Physics 21, 905–940 (1982)

    CrossRef  Google Scholar 

  3. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and Development 17, 525–532 (1973)

    CrossRef  MATH  Google Scholar 

  4. Boon, J.P., Dab, D., Kapral, R., Lawniczak, A.: Lattice gas automata for reactive systems. Physics Reports 273, 55–147 (1996)

    CrossRef  MathSciNet  Google Scholar 

  5. Chandran, H., Gopalkrishnan, N., Phillips, A., Reif, J.: Localized hybridization circuits. In: Cardelli, L., Shih, W. (eds.) DNA 17. LNCS, vol. 6937, pp. 64–83. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  6. Chen, X.: Expanding the rule set of DNA circuitry with associative toehold activation. Journal of the American Chemical Society 134, 263–271 (2011)

    CrossRef  Google Scholar 

  7. Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nature Nanotechnology 8, 755–762 (2013)

    CrossRef  Google Scholar 

  8. Cook, M.: Universality in elementary cellular automata. Complex Systems 15, 1–40 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Dabby, N.L.: Synthetic molecular machines for active self-assembly: prototype algorithms, designs, and experimental study. Ph.D. thesis, California Institute of Technology (2013)

    Google Scholar 

  10. Dannenberg, F., Kwiatkowska, M., Thachuk, C., Turberfield, A.J.: DNA walker circuits: Computational potential, design, and verification. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 31–45. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  11. Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences 101, 15275–15278 (2004)

    CrossRef  Google Scholar 

  12. Douglas, S.M., Bachelet, I., Church, G.M.: A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012)

    CrossRef  Google Scholar 

  13. Ermentrout, G.B., Edelstein-Keshet, L.: Cellular automata approaches to biological modeling. Journal of Theoretical Biology 160, 97–133 (1993)

    CrossRef  Google Scholar 

  14. Gács, P.: Reliable cellular automata with self-organization. Journal of Statistical Physics 103, 45–267 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Genot, A.J., Bath, J., Turberfield, A.J.: Combinatorial displacement of DNA strands: application to matrix multiplication and weighted sums. Angewandte Chemie International Edition 52, 1189–1192 (2013)

    CrossRef  Google Scholar 

  16. Genot, A.J., Zhang, D.Y., Bath, J., Turberfield, A.J.: Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. Journal of the American Chemical Society 133, 2177–2182 (2011)

    CrossRef  Google Scholar 

  17. Greenberg, J.M., Hastings, S.: Spatial patterns for discrete models of diffusion in excitable media. SIAM Journal on Applied Mathematics 34(3), 515–523 (1978)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Gu, H., Chao, J., Xiao, S.J., Seeman, N.C.: A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010)

    CrossRef  Google Scholar 

  19. Han, J., Jonker, P.: A defect-and fault-tolerant architecture for nanocomputers. Nanotechnology 14, 224 (2003)

    CrossRef  Google Scholar 

  20. He, Y., Liu, D.R.: Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nature Nanotechnology 5, 778–782 (2010)

    CrossRef  Google Scholar 

  21. Jahnke, W., Winfree, A.T.: A survey of spiral-wave behaviors in the Oregonator model. International Journal of Bifurcation and Chaos 1, 445–466 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  22. Jungmann, R., Steinhauer, C., Scheible, M., Kuzyk, A., Tinnefeld, P., Simmel, F.C.: Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Letters 10, 4756–4761 (2010)

    CrossRef  Google Scholar 

  23. Kari, J.: Theory of cellular automata: A survey. Theoretical Computer Science 334, 3–33 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  24. Lakin, M.R., Phillips, A., Stefanovic, D.: Modular verification of DNA strand displacement networks via serializability analysis. In: Soloveichik, D., Yurke, B. (eds.) DNA 19. LNCS, vol. 8141, pp. 133–146. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  25. Lee, J., Adachi, S., Peper, F., Mashiko, S.: Delay-insensitive computation in asynchronous cellular automata. Journal of Computer and System Sciences 70, 201–220 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  26. Liu, W., Zhong, H., Wang, R., Seeman, N.C.: Crystalline two-dimensional DNA-origami arrays. Angewandte Chemie 123, 278–281 (2011)

    CrossRef  Google Scholar 

  27. Muscat, R.A., Bath, J., Turberfield, A.J.: A programmable molecular robot. Nano Letters 11, 982–987 (2011)

    CrossRef  Google Scholar 

  28. Muscat, R.A., Strauss, K., Ceze, L., Seelig, G.: DNA-based molecular architecture with spatially localized components. In: Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA), pp. 177–188 (2013)

    Google Scholar 

  29. Phillips, A., Cardelli, L.: A programming language for composable DNA circuits. Journal of The Royal Society Interface 6, S419–S436 (2009)

    Google Scholar 

  30. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  31. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011)

    CrossRef  Google Scholar 

  32. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)

    CrossRef  Google Scholar 

  33. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology 2, e424 (2004)

    Google Scholar 

  34. Rothemund, P.W.K.: A DNA and restriction enzyme implementation of Turing machines. DNA Based Computers, DIMACS 27, 75–119 (1996)

    MathSciNet  Google Scholar 

  35. Smith, W.D.: DNA computers in vitro and in vivo. DNA Based Computers, DIMACS 27, 121–185 (1996)

    Google Scholar 

  36. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences 107, 5393–5398 (2010)

    CrossRef  Google Scholar 

  37. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Computing 7(4), 615–633 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  38. Tan, S.J., Campolongo, M.J., Luo, D., Cheng, W.: Building plasmonic nanostructures with DNA. Nature Nanotechnology 6, 268–276 (2011)

    CrossRef  Google Scholar 

  39. Toffoli, T., Margolus, N.: Cellular automata machines: a new environment for modeling. MIT Press (1987)

    Google Scholar 

  40. Venkataraman, S., Dirks, R.M., Rothemund, P.W.K., Winfree, E., Pierce, N.A.: An autonomous polymerization motor powered by DNA hybridization. Nature Nanotechnology 2, 490–494 (2007)

    CrossRef  Google Scholar 

  41. Von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. Automata Studies 34, 43–98 (1956)

    Google Scholar 

  42. Wang, W.: An asynchronous two-dimensional self-correcting cellular automaton. In: Proceedings of 32nd Annual Symposium on Foundations of Computer Science, pp. 278–285. IEEE (1991)

    Google Scholar 

  43. Yin, P., Sahu, S., Turberfield, A.J., Reif, J.H.: Design of autonomous DNA cellular automata. In: Carbone, A., Pierce, N.A. (eds.) DNA 11. LNCS, vol. 3892, pp. 399–416. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  44. Yin, P., Turberfield, A.J., Sahu, S., Reif, J.H.: Design of an autonomous DNA nanomechanical device capable of universal computation and universal translational motion. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 10. LNCS, vol. 3384, pp. 426–444. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  45. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    CrossRef  Google Scholar 

  46. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. Journal of the American Chemical Society 131, 17303–17314 (2009)

    CrossRef  Google Scholar 

  47. Zhang, D.Y., Chen, S.X., Yin, P.: Optimizing the specificity of nucleic acid hybridization. Nature Chemistry 4, 208–214 (2012)

    CrossRef  Google Scholar 

  48. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chemistry 3, 103–113 (2011)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Qian, L., Winfree, E. (2014). Parallel and Scalable Computation and Spatial Dynamics with DNA-Based Chemical Reaction Networks on a Surface. In: Murata, S., Kobayashi, S. (eds) DNA Computing and Molecular Programming. DNA 2014. Lecture Notes in Computer Science, vol 8727. Springer, Cham. https://doi.org/10.1007/978-3-319-11295-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11295-4_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11294-7

  • Online ISBN: 978-3-319-11295-4

  • eBook Packages: Computer ScienceComputer Science (R0)