Skip to main content

Localized Hybridization Circuits

  • Conference paper
DNA Computing and Molecular Programming (DNA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6937))

Included in the following conference series:

Abstract

Molecular computing executed via local interactions of spatially contiguous sets of molecules has potential advantages of (i) speed due to increased local concentration of reacting species, (ii) generally sharper switching behavior and higher precision due to single molecule interactions, (iii) parallelism since each circuit operates independently of the others and (iv) modularity and scalability due to the ability to reuse DNA sequences in spatially separated regions. We propose detailed designs for local molecular computations that involve spatially contiguous molecules arranged on addressable substrates. The circuits act via enzyme-free DNA hybridization reaction cascades. Our designs include composable OR, AND and propagation Boolean gates, and techniques to achieve higher degree fan-in and fan-out. A biophysical model of localized hybridization reactions is used to estimate the effect of locality on reaction rates. We also use the Visual DSD simulation software in conjunction with localized reaction rates to simulate a localized circuit for computing the square root of a four bit number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems. Science 266(5178), 1021–1024 (1994)

    Article  Google Scholar 

  2. Sherman, W., Seeman, N.: A Precisely Controlled DNA Biped Walking Device. Nano Letters 4, 1203–1207 (2004)

    Article  Google Scholar 

  3. Zhang, D., Turberfield, A., Yurke, B., Winfree, E.: Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA. Science 318, 1121–1125 (2007)

    Article  Google Scholar 

  4. Yin, P., Choi, H., Calvert, C., Pierce, N.: Programming Biomolecular Self-assembly Pathways. Nature 451(7176), 318–322 (2008)

    Article  Google Scholar 

  5. Dirks, R., Pierce, N.: Triggered Amplification by Hybridization Chain Reaction. Proceedings of the National Academy of Sciences of the United States of America 101(43), 15275–15278 (2004)

    Article  Google Scholar 

  6. Sakamoto, K., Kiga, D., Momiya, K., Gouzu, H., Yokoyama, S., Ikeda, S., Sugiyama, H., Hagiya, M.: State Transitions by Molecules. Biosystems, 81–91 (1999)

    Google Scholar 

  7. Qian, L., Winfree, E.: Scaling up Digital Circuit Computation with DNA Strand Displacement Cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  8. Rothemund, P., Winfree, E.: The Program-Size Complexity of Self-Assembled Squares. In: Symposium on Theory of Computing, pp. 459–468 (2000)

    Google Scholar 

  9. Turberfield, A., Mitchell, J., Yurke, B., Mills, A., Blakey, M., Simmel, F.: DNA Fuel for Free-Running Nanomachines. Physical Review Letters 90(11) (2003)

    Google Scholar 

  10. Seelig, G., Yurke, B., Winfree, E.: Catalyzed Relaxation of a Metastable DNA Fuel. Journal of the American Chemical Society 128(37), 12211–12220 (2006)

    Article  Google Scholar 

  11. He, Y., Liu, D.: Autonomous Multistep Organic Synthesis in a Single Isothermal Solution Mediated by a DNA Walker. Nature Nanotechnology 5(11), 778–782 (2010)

    Article  Google Scholar 

  12. Gu, H., Chao, J., Xiao, S.-J., Seeman, N.: A Proximity-based Programmable DNA Nanoscale Assembly Line. Nature 465(7295), 202–205 (2010)

    Article  Google Scholar 

  13. Yan, H., Park, S.H., Finkelstein, G., Reif, J., LaBean, T.: DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires. Science 301(5641), 1882–1884 (2003)

    Article  Google Scholar 

  14. Rothemund, P.: Folding DNA to Create Nanoscale Shapes and Patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  15. Qian, L., Winfree, E.: A Simple DNA Gate Motif for Synthesizing Large-scale Circuits. DNA Computing, 70–89 (2009)

    Google Scholar 

  16. Cardelli, L.: Two-Domain DNA Strand Displacement. DCM, 47–61 (2010)

    Google Scholar 

  17. Park, S.-H., Yin, P., Liu, Y., Reif, J., LaBean, T., Yan, H.: Programmable DNA Self-assemblies for Nanoscale Organization of Ligands and Proteins. Nano Letters 5, 729–733 (2005)

    Article  Google Scholar 

  18. Pistol, C., Dwyer, C.: Scalable, Low-cost, Hierarchical Assembly of Programmable DNA Nanostructures. Nanotechnology 18, 125305–125309 (2007)

    Article  Google Scholar 

  19. Lin, C., Liu, Y., Yan, H.: Self-Assembled Combinatorial Encoding Nanoarrays for Multiplexed Biosensing. Nano Letters 7(2), 507–512 (2007)

    Article  Google Scholar 

  20. Douglas, S., Dietz, H., Liedl, T., Hogberg, B., Graf, F., Shih, W.: Self-assembly of DNA into Nanoscale Three-dimensional Shapes. Nature 459(7245), 414–418 (2009)

    Article  Google Scholar 

  21. Dietz, H., Douglas, S., Shih, W.: Folding DNA into Twisted and Curved Nanoscale Shapes. Science 325(5941), 725–730 (2009)

    Article  Google Scholar 

  22. Zhang, D.: Towards Domain-Based Sequence Design for DNA Strand Displacement Reactions. DNA 16, 162–175 (2010)

    Google Scholar 

  23. Dirks, R., Bois, J., Schaeffer, J., Winfree, E., Pierce, N.: Thermodynamic Analysis of Interacting Nucleic Acid Strands. SIAM Review 49, 65–88 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Park, S.H., Pistol, C., Ahn, S.J., Reif, J., Lebeck, A., LaBean, C.D.T.: Finite-Size, Fully Addressable DNA Tile Lattices Formed by Hierarchical Assembly Procedures. Angewandte Chemie International Edition 45(5), 735–739 (2006)

    Article  Google Scholar 

  25. Genot, A., Zhang, D., Bath, J., Turberfield, A.: Remote Toehold: A Mechanism for Flexible Control of DNA Hybridization Kinetics. Journal of American Chemical Society 133(7), 2177–2182 (2011)

    Article  Google Scholar 

  26. Phillips, A., Cardelli, L.: A Programming Language for Composable DNA Circuits. Journal of The Royal Society Interface 6(11), 419–436 (2009)

    Article  Google Scholar 

  27. Zhang, D.Y., Winfree, E.: Control of DNA Strand Displacement Kinetics Using Toehold Exchange. Journal of the American Chemical Society 131(48), 17303–17314 (2009)

    Article  Google Scholar 

  28. Lakin, M., Youssef, S., Cardelli, L., Phillips, A.: Abstractions for DNA Circuit Design. Journal of The Royal Society Interface (in press, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chandran, H., Gopalkrishnan, N., Phillips, A., Reif, J. (2011). Localized Hybridization Circuits. In: Cardelli, L., Shih, W. (eds) DNA Computing and Molecular Programming. DNA 2011. Lecture Notes in Computer Science, vol 6937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23638-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23638-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23637-2

  • Online ISBN: 978-3-642-23638-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics