Skip to main content

Transformation of Ascomycetous Fungi Using Autonomously Replicating Vectors

  • Chapter
  • First Online:
Genetic Transformation Systems in Fungi, Volume 2

Part of the book series: Fungal Biology ((FUNGBIO))

  • 2373 Accesses

Abstract

Autonomously replicating vectors are maintained independent of chromosomal replication in fungal cells. In several fungi, autonomously replicating vectors containing the AMA1 sequence derived from Aspergillus nidulans have been used to increase transformation efficiency, improve expression of target genes, and facilitate construction of genomic libraries, suggesting that AMA1-bearing vectors may be applicable to a wide range of fungal species. Here we describe a transformation procedure using an AMA1-bearing vector in the plant pathogenic fungus Rosellinia necatrix. This procedure increases transformation efficiency more than fivefold compared with a genome-integrating vector. The AMA1 vectors were maintained extrachromosomally in most transformants. In addition, co-transformation using multiple AMA1-bearing vectors was also successful. AMA1-bearing vectors are a useful addition to the experimental toolbox for many transformation experiments.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-3-319-10503-1_22

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-10503-1_22

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleksenko A, Clutterbuck AJ (1997) Autonomous plasmid replication in Aspergillus nidulans: AMA1 and MATE elements. Fungal Genet Biol 21:373–387

    Article  CAS  PubMed  Google Scholar 

  • Bruckner B, Unkles SE, Weltring K, Kinghorn JR (1992) Transformation of Gibberella fujikuroi: effect of the Aspergillus nidulans AMA1 sequence on frequency and integration. Curr Genet 22:313–316

    Article  CAS  PubMed  Google Scholar 

  • Fierro F, Kosalkova K, Gutierrez S, Martin JF (1996) Autonomously replicating plasmids carrying the AMA1 region in Penicillium chrysogenum. Curr Genet 29:482–489

    Article  CAS  PubMed  Google Scholar 

  • Fierro F, Laich F, Garcia-Rico RO, Martin JF (2004) High efficiency transformation of Penicillium nalgiovense with integrative and autonomously replicating plasmids. Int J Food Microbiol 90:237–248

    Article  CAS  PubMed  Google Scholar 

  • Kanematsu S, Arakawa M, Oikawa Y, Onoue M, Osaki H, Nakamura H, Ikeda K, Kuga-Uetake Y, Nitta H, Sasaki A, Suzaki K, Yoshida K, Matsumoto N (2004) A reovirus causes hypovirulence of Rosellinia necatrix. Phytopathology 94:561–568

    Article  CAS  PubMed  Google Scholar 

  • Khalaj V, Eslami H, Azizi M, Rovira-Graells N, Bromley M (2007) Efficient downregulation of alb1 gene using an AMA1-based episomal expression of RNAi construct in Aspergillus fumigatus. FEMS Microbiol Lett 270:250–254

    Article  CAS  PubMed  Google Scholar 

  • Kubodera T, Yamashita N, Nishimura A (2002) Transformation of Aspergillus sp. and Trichoderma reesei using the pyrithiamine resistance gene (ptrA) of Aspergillus oryzae. Biosci Biotechnol Biochem 66:404–406

    Article  CAS  PubMed  Google Scholar 

  • Langfelder K, Jahn B, Gehringer H, Schmidt A, Wanner G, Brakhage AA (1998) Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med Microbiol Immunol 187:79–89

    Article  CAS  PubMed  Google Scholar 

  • Liu W, May GS, Lionakis MS, Lewis RE, Kontoyiannis DP (2004) Extra copies of the Aspergillus fumigatus squalene epoxidase gene confer resistance to terbinafine: genetic approach to studying gene dose-dependent resistance to antifungals in A. fumigatus. Antimicrob. Agents Chemother 48:2490–2496

    Article  CAS  Google Scholar 

  • Meyer V (2008) Genetic engineering of filamentous fungi—progress, obstacles and future trends. Biotechnol Adv 26:177–185

    Article  CAS  PubMed  Google Scholar 

  • Ozeki K, Kanda A, Hamachi M, Nunokawa Y (1996) Construction of a promoter probe vector autonomously maintained in Aspergillus and characterization of promoter regions derived from A. niger and A. oryzae genomes. Biosci Biotechnol Biochem 60:383–389

    Article  CAS  PubMed  Google Scholar 

  • Pliego C, Kanematsu S, Ruano-Rosa D, de Vicente A, Lopez-Herrera C, Cazorla FM, Ramos C (2009) GFP sheds light on the infection process of avocado roots by Rosellinia necatrix. Fungal Genet Biol 46:137–145

    Article  CAS  PubMed  Google Scholar 

  • Rebordinos L, Vallejo I, Santos M, Collado IG, Carbu M, Cantoral JM (2000) Genetic analysis and relationship to pathogenicity in Botrytis cinerea. Rev Iberoam Micol 17:S37–S42

    CAS  PubMed  Google Scholar 

  • Shimizu T, Kinoshita H, Nihira T (2006) Development of transformation system in Monascus purpureus using an autonomous replication vector with aureobasidin A resistance gene. Biotechnol Lett 28:115–120

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Kinoshita H, Nihira T (2007) Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus. Appl Environ Microbiol 73:5097–5103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shimizu T, Ito T, Kanematsu S (2012) Transient and multivariate system for transformation of a fungal plant pathogen, Rosellinia necatrix, using autonomously replicating vectors. Curr Genet 58:129–138

    Article  CAS  PubMed  Google Scholar 

  • Storms R, Zheng Y, Li H, Sillaots S, Martinez-Perez A, Tsang A (2005) Plasmid vectors for protein production, gene expression and molecular manipulations in Aspergillus niger. Plasmid 53:191–204

    Article  CAS  PubMed  Google Scholar 

  • Verdoes JC, Punt PJ, van der Berg P, Debets F, Stouthamer AH, van den Hondel CA (1994) Characterization of an efficient gene cloning strategy for Aspergillus niger based on an autonomously replicating plasmid: cloning of the nicB gene of A. niger. Gene 146:159–165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the help of Naoyuki Matsumoto and Hajime Yaegashi for their fruitful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoko Kanematsu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kanematsu, S., Shimizu, T. (2015). Transformation of Ascomycetous Fungi Using Autonomously Replicating Vectors. In: van den Berg, M., Maruthachalam, K. (eds) Genetic Transformation Systems in Fungi, Volume 2. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-10503-1_13

Download citation

Publish with us

Policies and ethics