Skip to main content

Biolistic Transformation of Candida glabrata for Homoplasmic Mitochondrial Genome Transformants

  • Chapter
  • First Online:
Genetic Transformation Systems in Fungi, Volume 1

Part of the book series: Fungal Biology ((FUNGBIO))

  • 2767 Accesses

Abstract

Genetic operations of mitochondrial genome of non-conventional yeast species is of great interest to investigate physiological functions of those genes located on the genome and many important metabolism functions associated with mitochondria, such as energy metabolism, generation of reactive oxygen species. Here, we describe a method to transform the mitochondrial genome of Candida glabrata by biolistic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrio JL, Demain AL (2006) Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev 30:187–214

    Article  PubMed  CAS  Google Scholar 

  • Avalos JL, Fink GR, Stephanopoulos G (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 31(4):335–341

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Balagurumoorthy P, Adelstein SJ, Kassis AI (2008) Method to eliminate linear DNA from mixture containing nicked circular, supercoiled, and linear plasmid DNA. Anal Biochem 381:172–174

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Berger KH, Yaffe MP (2000) Mitochondrial DNA inheritance in Saccharomyces cerevisiae. Trends Microbiol 8:508–513

    Article  PubMed  CAS  Google Scholar 

  • Bialkova A, Subik J (2006) Biology of the pathogenic yeast Candida glabrata. Folia Microbiol (Praha) 51:3–20

    Article  CAS  Google Scholar 

  • Bonnefoy N, Remacle C, Fox TD (2007) Genetic transformation of Saccharomyces cerevisiae and Chlamy-domonas reinhardtii mitochondria. In: Lorand L (ed) Mitochondria, 2nd edn. Academic, San Diego, CA, pp 525–548

    Google Scholar 

  • Burgstaller JP, Schinogl P, Dinnyes A, Muller M, Steinborn R (2007) Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer. BMC Dev Biol 7:10

    Article  Google Scholar 

  • Butow RA, Henke RM, Moran JV, Belcher SM, Perlman PS (1996) Transformation of Saccharomyces cerevisiae mitochondria using the biolistic gun. Methods Enzymol 264:265–278

    Article  PubMed  CAS  Google Scholar 

  • Chen XJ, Clark-Walker GD (2000) The petite mutation in yeasts: 50 years on. Int Rev Cytol 194:197–238

    Article  PubMed  CAS  Google Scholar 

  • Clark-Walker GD (2007) The F1-ATPase inhibitor lnh1 (IF1) affects suppression of mtDNA loss-lethality in Kluyveromyces lactis. FEMS Yeast Res 7:665–674

    Article  PubMed  CAS  Google Scholar 

  • Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155:160–171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Defontaine A, Lecocq FM, Hallet JN (1991) A rapid miniprep method for the preparation of yeast mitochondrial DNA. Nucleic Acids Res 19:185

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Druzhyna NM, Wilson GL, LeDoux SP (2008) Mitochondrial DNA repair in aging and disease. Mech Ageing Dev 129:383–390

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Duenas E, Revuelta JL, del Rey F, de Aldana CRV (1999) Disruption and basic phenotypic analysis of six novel genes from the left arm of chromosome XIV of Saccharomyces cerevisiae. Yeast 15:63–72

    Article  PubMed  CAS  Google Scholar 

  • Falkenberg M, Larsson NG, Gustafsson CM (2007) DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 76:679–699

    Article  PubMed  CAS  Google Scholar 

  • Foury F, Roganti T, Lecrenier N, Purnelle B (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440:325–331

    Article  PubMed  CAS  Google Scholar 

  • Gyllensten U, Wharton D, Josefsson A, Wilson AC (1991) Paternal inheritance of mitochondrial-DNA in mice. Nature 352:255–257

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR, Folkerts O (1992) Structure and function of the higher plant mitochondrial genome. Int Rev Cytol 141:129–172

    Article  CAS  Google Scholar 

  • Harris CB, Chowanadisai W, Mishchuk DO, Satre MA, Slupsky CM, Rucker RB (2013) Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects. J Nutr Biochem 24:2076–2084

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Gottschling DE (2012) An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492(7428):261–265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kang D, Hamasaki N (2002) Maintenance of mitochondrial DNA integrity: repair and degradation. Curr Genet 41:311–322

    Article  PubMed  CAS  Google Scholar 

  • Kaur R, Domergue R, Zupancic ML, Cormack BP (2005) A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 8:378–384

    Article  PubMed  CAS  Google Scholar 

  • Kominsky DJ, Thorsness PE (2000) Expression of the Saccharomyces cerevisiae gene YME1 in the petite-negative yeast Schizosaccharomyces pombe converts it to petite-positive. Genetics 154:147–154

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koszul R, Malpertuy A, Frangeul L, Bouchier C, Wincker P, Thierry A, Duthoy S, Ferris S, Hennequin C, Dujon B (2003) The complete mitochondrial genome sequence of the pathogenic yeast Candida (Torulopsis) glabrata. FEBS Lett 534:39–48

    Article  PubMed  CAS  Google Scholar 

  • Lewin AS, Morimoto R, Rabinowitz M (1979) Stable heterogeneity of mitochondrial DNA in grande and petite strains of S. cerevisiae. Plasmid 2:474–484

    Article  PubMed  CAS  Google Scholar 

  • Liu LM, Li Y, Li HZ, Chen J (2004) Manipulating the pyruvate dehydrogenase bypass of a multi-vitamin auxotrophic yeast Torulopsis glabrata enhanced pyruvate production. Lett Appl Microbiol 39:199–206

    Article  PubMed  CAS  Google Scholar 

  • Lovett ST, Kolodner RD (1989) Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the rec J gene of Escherichia coli. Proc Natl Acad Sci U S A 86:2627–2631

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McMullin TW, Fox TD (1993) COX3 messenger RNA-specific translational activator proteins are associated with the inner mitochondrial-membrane in Saccharomyces cerevisiae. J Biol Chem 268:11737–11741

    PubMed  CAS  Google Scholar 

  • Muller H, Hennequin C, Gallaud J, Dujon B, Fairhead C (2008) The asexual yeast Candida glabrata maintains distinct a and α haploid mating types. Eukaryot Cell 7:848–858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Polakova S, Blume C, Zarate JA, Mentel M, Jorck-Ramberg D, Stenderup J, Piskur J (2009) Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata. Proc Natl Acad Sci U S A 106:2688–2693

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rak M, Tetaud E, Duvezin-Caubet S, Ezkurdia N, Bietenhader M, Rytka J, di Rago JP (2007a) A yeast model of the neurogenic ataxia retinitis pigmentosa (NARP) T8993G mutation in the mitochondrial ATP synthase-6 gene. J Biol Chem 282:34039–34047

    Article  PubMed  CAS  Google Scholar 

  • Rak M, Tetaud E, Godard F, Sagot I, Salin B, Duvezin-Caubet S, Slonimski PP, Rytka J, di Rago JP (2007b) Yeast cells lacking the mitochondrial gene encoding the ATP synthase subunit 6 exhibit a selective loss of complex IV and unusual mitochondrial morphology. J Biol Chem 282:10853–10864

    Article  PubMed  CAS  Google Scholar 

  • Ryan MT, Hoogenraad NJ (2007) Mitochondrial–nuclear communications. Annu Rev Biochem 76:701–722

    Article  PubMed  CAS  Google Scholar 

  • Sachadyn P, Zhang XM, Clark LD, Naviaux RK, Heber-Katz E (2008) Naturally occurring mitochondrial DNA heteroplasmy in the MRL mouse. Mitochondrion 8:358–366

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schmidt P, Walker J, Selway L, Stead D, Yin Z, Enjalbert B, Weig M, Brown AJ (2008) Proteomic analysis of the pH response in the fungal pathogen Candida glabrata. Proteomics 8:534–544

    Article  PubMed  CAS  Google Scholar 

  • Shitara H, Hayashi J, Takahama S, Kaneda H, Yonekawa H (1998) Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage. Genetics 148:851–857

    PubMed  CAS  PubMed Central  Google Scholar 

  • Steele DF, Butler CA, Fox TD (1996) Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc Natl Acad Sci U S A 93:5253–5257

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Strand MK, Stuart GR, Longley MJ, Graziewicz MA, Dominick OC, Copeland WC (2003) POS5 gene of Saccharomyces cerevisiae encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA. Eukaryot Cell 2:809–820

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Subramanian K, Rutvisuttinunt W, Scott W, Myers RS (2003) The enzymatic basis of processivity in lambda exonuclease. Nucleic Acids Res 31:1585–1596

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Talla E, Anthouard V, Bouchier C, Frangeul L, Dujon B (2005) The complete mitochondrial genome of the yeast Kluyveromyces thermotolerans. FEBS Lett 579:30–40

    Article  PubMed  CAS  Google Scholar 

  • Taylor SD, Zhang H, Eaton JS, Rodeheffer MS, Lebedeva MA, O’Rourke TW, Siede W, Shadel GS (2005) The conserved Mec1/Rad53 nuclear checkpoint pathway regulates mitochondrial DNA copy number in Saccharomyces cerevisiae. Mol Biol Cell 16:3010–3018

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Toogood PL (2008) Mitochondrial drugs. Curr Opin Chem Biol 12:457–463

    Article  PubMed  CAS  Google Scholar 

  • Veatch JR, McMurray MA, Nelson ZW, Gottschling DE (2009) Mitochondrial dysfunction leads to nuclear genome instability via an iron–sulfur cluster defect. Cell 137:1247–1258

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace DC (1992) Diseases of the mitochondrial DNA. Annu Rev Biochem 61:1175–1212

    Article  PubMed  CAS  Google Scholar 

  • Wang QH, He P, Lu DJ, Shen A, Jiang N (2005) Metabolic engineering of Torulopsis glabrata for improved pyruvate production. Enzyme Microb Technol 36:832–839

    Article  CAS  Google Scholar 

  • Zhou JW, Dong ZY, Liu LM, Du GC, Chen J (2009a) A reusable method for construction of non-marker large fragment deletion yeast auxotroph strains: a practice in Torulopsis glabrata. J Microbiol Methods 76:70–74

    Article  PubMed  CAS  Google Scholar 

  • Zhou JW, Liu LM, Shi ZP, Du GC, Chen J (2009b) ATP in current biotechnology: regulation, applications and perspectives. Biotechnol Adv 27:94–101

    Article  PubMed  Google Scholar 

  • Zhou JW, Liu LM, Chen J (2010) Mitochondrial DNA heteroplasmy in Candida glabrata after mitochondrial transformation. Eukaryot Cell 9:806–814

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zinn AR, Pohlman JK, Perlman PS, Butow RA (1987) Kinetic and segregational analysis of mitochondrial DNA recombinant in yeast. Plasmid 17:248–256

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Thomas D. Fox for kind donation of pDS24 and continuous technical support; Nathalie Bonnefoy and Malgorzata Rak for suggestive discussion; and Xiaowei Niu for help with biolistic transformation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwen Zhou Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, J., Liu, L., Du, G., Chen, J. (2015). Biolistic Transformation of Candida glabrata for Homoplasmic Mitochondrial Genome Transformants. In: van den Berg, M., Maruthachalam, K. (eds) Genetic Transformation Systems in Fungi, Volume 1. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-10142-2_11

Download citation

Publish with us

Policies and ethics