Skip to main content

Part of the book series: New ICMI Study Series ((NISS))

Abstract

This chapter concerns designing teaching/learning tasks that involve the use of tools in the mathematics classroom and consequently how, under such design, tools can mediate the representations and discourses of mathematical knowledge. The authors focus particularly on digital tools and how task design can be used to transform an artifact into a pedagogical instrument. Design considerations and heuristics are discussed to explore possible research directions in tool-based task design. In particular, the chapter exemplifies heuristics or principles (theoretical or pragmatic) for tool-based task design that are conducive to teaching and learning of mathematics, including epistemological, mathematical, representational, and pedagogical considerations of tool-based task design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abramovich, S. (2001). Cultural tools and mathematics teacher education. In F. R. Curcio (Ed.), Proceedings of the Third U.S.-Russia Joint Conference on Mathematics Education and the Mathematics Education Seminar at the University of Goteborg (pp. 61–67). Spokane, WA: People to People Ambassador Programs.

    Google Scholar 

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274.

    Article  Google Scholar 

  • Artigue, M., Cerulli, M., Haspekian, M., & Maracci, M. (2009). Connecting and integrating theoretical frames: The TELMA contribution. International Journal of Computer for Mathematical Learning, 14, 217–240.

    Article  Google Scholar 

  • Artigue, M., & Mariotti, M. A. (2014). Networking theoretical frames: The ReMath enterprise. Educational Studies in Mathematics, 85, 329–355.

    Article  Google Scholar 

  • Arzarello, F., Bairral, M., Danie, C., & Yasuyuki, I. (2013). Ways of manipulation touchscreen in one geometrical dynamic software. In E. Faggiano & A. Montone (Eds.), Proceedings of the 11th International Conference on Technology in Mathematics Teaching (pp. 59–64). Bari: University of Bari.

    Google Scholar 

  • Arzarello, F., Bartolini-Bussi, M., Leung, A., Mariotti, M. A., & Stevenson, I. (2012). Experimental approach to theoretical thinking: Artifacts and proofs. In G. Hanna & M. de Villers (Eds.), Proof and proving in mathematics education: The 19th ICMI Study (New ICMI Study Series, pp. 97–137). Berlin: Springer.

    Chapter  Google Scholar 

  • Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practices in Cabri environments. ZDM: The International Journal on Mathematics Education, 34(3), 66–72.

    Google Scholar 

  • Balacheff, N., & Sutherland, R. (1994). Epistemological domain of validity of microworlds: The case of Logo and Cabri-geometre. In R. Lewis & P. Mendelsohn (Eds.), Proceedings of the IFIP TC3/WG3.3 Working Conference on Lessons from Learning (pp. 137–150). Amsterdam: Elsevier; North Holland: IFIP.

    Google Scholar 

  • Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. In L. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 746–783). New York: Routledge.

    Google Scholar 

  • Bokhove, C. (2013). Using crises, feedback and fading for online task design. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 17–24), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Bottino, R. M., & Kynigos, C. (2009). Mathematics education & digital technologies: Facing the challenge of networking European teams. International Journal of Computers for Mathematical Learning, 14, 203–215.

    Article  Google Scholar 

  • Brousseau, G. (1998). Theory of didactical situations in mathematics. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Bruner, J. S. (1966). Toward a theory of instruction. Cambridge, MA: Belkapp.

    Google Scholar 

  • Buchbinder, O., & Zaslavsky, O. (2013). A holistic approach for designing tasks that capture and enhance mathematical understanding of a particular topic: The case of the interplay between examples and proof task. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 25–34), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Cerulli, M., Pedemonte, B., & Robotti, E. (2007). An integrated perspective to approach technology in mathematics education. In M. Bosch (Ed.), Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (pp. 1389–1399). Sant Feliu de Guixols, Spain: IQS Fundemi Business Institute.

    Google Scholar 

  • Chan, Y. C., & Leung, A. (2013). Rotational symmetry: Semiotic potential of a transparency toolkit. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 35–44), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Chevallard, Y. (1994). Ostensifs et non-ostensifs dans l’activité mathématique. Intervention au Séminaire de l’Associazione Mathesis (Turin, 3 février 1994). Actes du Séminaire pour l’année 1993–1994 (pp. 190–200).

    Google Scholar 

  • Clark-Wilson, A., & Timotheus, J. (2013). Designing tasks within a multi-representational technological environment: An emerging rubric. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 45–52), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Confrey, J., Hoyles, C., Jones, D., Kahn, K., Maloney, A., Nguyen, K., et al. (2010). Designing software for mathematical engagement through modeling. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology: Rethinking the terrain – the 17th ICMI Study (pp. 19–46). New York: Springer.

    Google Scholar 

  • DiSessa, A., Hammer, D., & Sherin, B. (1991). Inventing graphing: Meta-representational expertise in children. The Journal of Mathematical Behavior, 10, 117–160.

    Google Scholar 

  • Drijvers, P., Boon, P., Doorman, M., Bokhove, C., & Tacoma, S. (2013). Digital design: RME principles for designing online tasks. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 53–60), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. Available online at http://lchc.ucsd.edu/MCA/Paper/Engestrom/expanding/toc.htm. Accessed August 18, 2014.

  • Fauconnier, G., & Turner, M. (1998). Conceptual integration networks. Cognitive Science, 22(2), 133–187.

    Article  Google Scholar 

  • Fauconnier, G., & Turner, M. (2002). The way we think: Conceptual blending and the mind’s hidden complexities. New York: Basic Books.

    Google Scholar 

  • Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: Reidel Publishing.

    Google Scholar 

  • Freudenthal, H. (1991). Revisiting mathematics education. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Geiger, V., & Redmond, T. (2013). Designing mathematical modelling tasks in a technology rich secondary school context. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 119–128), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers. Educational Studies in Mathematics, 71(3), 199–218.

    Article  Google Scholar 

  • Healy, L. (2000). Identifying and explaining geometrical relationship: Interactions with robust and soft Cabri constructions. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 103–117). Hiroshima, Japan: PME.

    Google Scholar 

  • Healy, L., Fernandes, S. H. A. A., & Bolite-Frant, J. B. (2013). Designing tasks for a more inclusive school. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 61–68), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Joubert, M. (2013). Using computers in classroom mathematical tasks: Revisiting theory to develop recommendations for the design of tasks. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 69–78), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Kaput, J. (1986). Information technology and mathematics: Opening new representational windows. The Journal of Mathematical Behavior, 5(2), 187–207.

    Google Scholar 

  • Kieran, C., Drijvers, P., Boileau, A., Hitt, F., Tanguay, D., Saldanha, L., et al. (2006). The co-emergence of machine techniques, paper-and-pencil techniques, and theoretical reflection: A study of CAS use in secondary school algebra. International Journal of Computers for Mathematical Learning, 11, 205–263.

    Article  Google Scholar 

  • Kynigos, C., & Lagrange, J.-B. (2014). Cross-analysis as a tool to forge connections amongst theoretical frames in using digital technologies in mathematical learning. Educational Studies in Mathematics, 85, 321–327.

    Article  Google Scholar 

  • Leung, A. (2011). An epistemic model of task design in dynamic geometry environment. ZDM: The International Journal on Mathematics Education, 43, 325–336.

    Article  Google Scholar 

  • Leung, A., & Lee, A. M. S. (2013). Students’ geometrical perception on a task-based dynamic geometry platform. Educational Studies in Mathematics, 82, 361–377.

    Article  Google Scholar 

  • Mackrell, K., Maschietto, M., & Soury-Lavergne, S. (2013). The interaction between task design and technology design in creating tasks with Cabri Elem. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 79–88), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Margolinas, C. (Ed.). (2013). Task design in mathematics education: Proceedings of ICMI Study 22, Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Mariotti, M. A. (2012). ICT as opportunities for teaching-learning in a mathematics classroom: The semiotic potential of artefacts. In T.-Y. Tso (Ed.), Proceedings of the 36th Conference for the International Group for the Psychology of Education (Vol. 1, pp. 25–42). Taipei, Taiwan: PME.

    Google Scholar 

  • Mason, J., Graham, A., & Johnston-Wilder, S. (Eds.). (2005). Developing thinking in algebra. London: Sage.

    Google Scholar 

  • Morgan, C., Mariotti, M. A., & Maffei, L. (2009). Representation in computational environments: Epistemological and social distance. International Journal of Computers for Mathematical Learning, 14, 241–263.

    Article  Google Scholar 

  • Noss, R., Healy, L., & Hoyles, C. (1997). The construction of mathematical meanings: Connecting the visual with the symbolic. Educational Studies in Mathematics, 33(2), 203–233.

    Article  Google Scholar 

  • Or, A. C. M. (2013). Designing tasks to foster operative apprehension for visualization and reasoning in dynamic geometry environment. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 89–98), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Rabardel, P. (1995). Les homes et les technologies, une approche cognitive des instruments contemporains. Paris: Armand Colin.

    Google Scholar 

  • Radford, L. (2013). Sensuous cognition. In D. Martinovic, V. Freiman, & Z. Karadag (Eds.), Visual mathematics and cyberlearning (pp. 141–162). New York: Springer.

    Chapter  Google Scholar 

  • Robotti, E. (2013). Dynamic representations for algebraic objects available in AlNuSet: How develop meanings of the notions involved in the equation solution. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 99–108), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Rogoff, B. (1998). Cognition as a collaborative process. In W. Damon (Series Ed.) and D. Kuhn & R. S. Siegler (Vol. Eds.), Handbook of child psychology (Vol. 2, pp. 679–744). New York: Wiley.

    Google Scholar 

  • Sfard, A. (2008). Thinking as communicating. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Sinclair, N. (2013). TouchCounts: An embodied, digital approach to learning number. In E. Faggiano & A. Motone (Eds.), Proceedings of the 11th International Conference on Technology in Mathematics Teaching (pp. 262–267). Bari, Italy: University of Bari.

    Google Scholar 

  • Sinclair, N., & Pimm, D. (2014). Number’s subtle touch: Expanding finger gnosis in the era of multi-touch technologies. In P. Liljedahl, C. Nical, S. Oesterle, & D. Allan (Eds.), Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th conference of the North American Chapter of the Psychology of Mathematics Education (Vol. 5, pp. 209–216). Vancouver, Canada: PME

    Google Scholar 

  • Thomas, M. O. J., & Lin, C. (2013). Designing tasks for use with digital technology. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 109–118), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers in Mathematical Learning, 9, 281–307.

    Article  Google Scholar 

  • Trouche, L. (2005). Instrumental genesis, individual and social aspects. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument (pp. 197–230). New York: Springer.

    Chapter  Google Scholar 

  • Turner, M., & Gilles Fauconnier, G. (2002). The way we think. Conceptual blending and the mind’s hidden complexities. New York: Basic Books.

    Google Scholar 

  • Verillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumental activity. European Journal of Psychology of Education, 10, 77–103.

    Article  Google Scholar 

  • Vygotsky, L. S. (1978). Mind and society. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Vygotsky, L. S. (1981). The instrumental method in psychology. In J. V. Wertsch (Ed.), The concept of activity in Soviet psychology (pp. 134–144). Armonk, NY: M.E. Sharpe.

    Google Scholar 

  • Whiteley, W., & Mamolo, A. (2013). Optimizing through geometric reasoning supported by 3-D models: Visual representations of change. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 129–140), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Wozniak, F. (2013). Pragmatic value and semiotic value of ostensives and task design. In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 141–150), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Yerushalmy, M. (2015). E-textbooks for mathematical guided inquiry: Design of tasks and task sequences. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education: An ICMI Study 22. New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen Leung .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This book was originally published with exclusive rights reserved by the Publisher in 2015 and was licensed as an open access publication in March 2021 under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence and indicate if changes were made.

The images or other third party material in this book may be included in the book's Creative Commons license, unless indicated otherwise in a credit line to the material or in the Correction Note appended to the book. For details on rights and licenses please read the Correction https://doi.org/10.1007/978-3-319-09629-2_13. If material is not included in the book's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Leung, A., Bolite-Frant, J. (2015). Designing Mathematics Tasks: The Role of Tools. In: Watson, A., Ohtani, M. (eds) Task Design In Mathematics Education. New ICMI Study Series. Springer, Cham. https://doi.org/10.1007/978-3-319-09629-2_6

Download citation

Publish with us

Policies and ethics