Skip to main content

Channel Hot Carrier Degradation and Self-Heating Effects in FinFETs

  • Chapter
  • First Online:
Hot Carrier Degradation in Semiconductor Devices

Abstract

The Channel Hot Carrier (CHC) degradation mechanisms are studied in 3-dimensional n-FinFET devices. In long channel devices, the most degraded condition is at low vertical electric field stress (VG ∼ VD/2) due to the interface degradation by hot carriers, while cold/hot carrier injection to the oxide bulk defect dominates at the high vertical field stress condition (VG = VD). In short channel devices, however, the most degraded condition is at high field stress around VG = VD, because hot carriers are generated continuously at high VG = VD and injected into the oxide bulk defects. The cold carrier contribution to the total CHC degradation is negligible in the short channel n-FinFETs.

Then, the CHC reliability is studied as a function of fin width at VG = VD stress condition, where higher CHC degradation is observed on narrower fin devices. Both interface degradation by hot carriers and pre-existing bulk oxide defects filling contribute significantly to the total CHC degradation. Though the CHC degradation magnitude is higher in narrower FinFETs, the degradation mechanism does not change as a function of fin width.

Lower CHC degradation is observed in 45° rotated substrate devices, due to the lower initial Nit at the fin side-walls than for the non-rotated device. The lower Si atom density in the 45° rotated FinFET device leads to lower interface degradation.

The effect of fin corners is also discussed. Rounded and sharp corner n-FinFETs do not show a significant difference in PBTI. Since the vertical field applied to the oxide is lower in CHC than PBTI, the corner rounding effect is expected to be negligible in CHC reliability.

An overview of measurement and simulation methodologies for the self-heating effect (SHE) is provided in the last section. It is found that self-heating is a non-negligible phenomenon in the SOI and FinFET technologies, compared to the planar devices. In FinFETs, degradation mechanisms can be activated even at usual operating conditions, which potentially impact device reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Groeseneken, R. Degraeve, B. Kaczer, K. Martens, Trends and perspectives for electrical characterization and reliability assessment in advanced CMOS technologies, in IEEE ESSDERC Proceedings (2010), pp. 64–72

    Google Scholar 

  2. G. Groeseneken, R. Bellens, G. Van den Bosch, H.E. Maes, Hot-carrier degradation in submicrometre MOSFETs: from uniform injection towards the real operating conditions. Semicond. Sci. Technol. 10, 1208–1220 (1995)

    Article  Google Scholar 

  3. C. Hu, S.C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, K.W. Terrill, Hot-electron-induced MOSFET degradation – model, monitor, and improvement. IEEE J. Solid State Circuits SC-20(1), 295–305 (1985)

    Google Scholar 

  4. C. Guerin, V. Huard, A. Bravaix, M. Denais, J.M. Roux, F. Perrier, W. Baks, Combined effect of NBTI and channel hot carrier effects in pMOSFETs, in International Integrated Reliability Workshop (2005), pp. 10–16

    Google Scholar 

  5. E. Amat, T. Kauerauf, R. Degraeve, A. De Keersgieter, R. Rodríguez, M. Nafría, X. Aymerich, G. Groeseneken, Channel hot-carrier degradation in short-channel transistors with high-k/metal gate stacks. IEEE Trans. Device Mater. Reliab. 9(3), 425–430 (2009)

    Article  Google Scholar 

  6. C.D. Young, J.-W. Yang, K. Matthews, S. Suthram, M.M. Hussain, G. Bersuker, C. Smith, R. Harris, R. Choi, B.H. Lee, H.-H. Tseng, Hot carrier degradation in HfSiON/TiN fin shaped field effect transistor with different substrate orientations. J. Vac. Sci. Technol. B 27(1), 468–471 (2009)

    Article  Google Scholar 

  7. S.E. Rauch, G. La Rosa, The energy‐driven paradigm of NMOSFET hot‐carrier effects. IEEE Trans. Device Mater. Reliab. 5(4), 701 (2005)

    Article  Google Scholar 

  8. C. Guérin, V. Huard, A. Bravaix, The energy driven hot‐carrier degradation modes in NMOSFETs. IEEE Trans. Device Mater. Reliab. 7(2), 225–235 (2007)

    Article  Google Scholar 

  9. A. Bravaix, C. Guerin, V. Huard, D. Roy, J.‐M. Roux, E. Vincent, Hot‐carrier acceleration factors for low power management in DC–AC stressed 40 nm NMOS node at high temperature, in IEEE International Reliability Physics Symposium (IRPS) Proceedings (2009), pp. 531–548

    Google Scholar 

  10. A. Bravaix, Y.M. Randriamihaja, V. Huard, D. Angot, X. Federspiel, W. Arfaoui, P. Mora, F. Cacho, M. Saliva, C. Besset, S. Renard, D. Roy, E. Vincent, Impact of the gate-stack change from 40 nm node SiON to 28 nm high-K metal gate on the hot-carrier and bias temperature damage, in IEEE IRPS Proceedings (2013), p. 2D.6

    Google Scholar 

  11. S. Ramey, A. Ashutosh, C. Auth, J. Clifford, M. Hattendorf, J. Hicks, R. James, A. Rahman, V. Sharma, A. St Amour, C. Wiegand, Intrinsic transistor reliability improvements from 22 nm tri-gate technology, in IEEE IRPS Proceedings (2013), p. 4C.5

    Google Scholar 

  12. C. Auth et al., A 22 nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors, in IEEE Symposium on VLSI Technology Digest of Technical Papers (2012), pp. 131–132

    Google Scholar 

  13. B. Kaczer, S. Mahato, V. Valduga de Almeida Camargo, M. Toledano-Luque, Ph.J. Roussel, T. Grasser, F. Catthoor, P. Dobrovolny, P. Zuber, G. Wirth, G. Groeseneken, Atomistic approach to variability of bias-temperature instability in circuit simulations, in IEEE IRPS Proceedings (2011), pp. 915–919

    Google Scholar 

  14. M. Denais, A. Bravaix, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, Y. Rey-Tauriac, N. Revil, On-the-fly characterization of NBTI in ultra-thin gate oxide PMOSFET’s, in IEEE International Electron Devices Meeting (2004), pp. 109–112

    Google Scholar 

  15. B. Kaczer, T. Grasser, Ph.J. Roussel, J. Martin-Martinez, R. O’Connor, B.J. O’Sullivan, G. Groeseneken, Ubiquitous relaxation in BTI stressing—New evaluation and insights, in IEEE IRPS Proceedings (2008), pp. 20–27

    Google Scholar 

  16. R. Bellens, P. Heremans, G. Groeseneken, H.E. Maes, A new procedure for lifetime prediction of N-channel mostransistors using the charge pumping techniqueieee, in IEEE IRPS Proceedings (1988), pp. 8–14

    Google Scholar 

  17. D.P. Ioannou, E. Cartier, Y. Wang, S. Mittl, PBTI response to interfacial layer thickness variation in Hf-based HKMG nFETs, in IEEE IRPS Proceedings (2010), pp. 1044–1048

    Google Scholar 

  18. M. Cho, M. Aoulaiche, R. Degraeve, B. Kaczer, T. Kauerauf, L.-Å. Ragnarsson, C. Adelmann, S. Van Elshocht, T.Y. Hoffmann, G. Groeseneken, Advanced PBTI reliability with 0.69 nm EOT GdHfO gate dielectric. Solid State Electron. 63, 5–7 (2011)

    Article  Google Scholar 

  19. E. Cartier, B.P. Linder, V. Narayanan, V.K. Paruchuri, Fundamental understanding and optimization of PBTI in nFETs with SiO2/HfO2 gate stack, in IEEE International Electron Devices Meeting (2006), pp. 1–4

    Google Scholar 

  20. M. Cho, J.-D. Lee, M. Aoulaiche, B. Kaczer, P. Roussel, T. Kauerauf, R. Degraeve, J. Franco, L.-A. Ragnarsson, G. Groeseneken, Insight into negative and positive bias temperature instability (N/PBTI) mechanism in sub 1-nanometer EOT devices. IEEE Trans. Electron Devices 59(8), 2042–2048 (2012)

    Article  Google Scholar 

  21. M. Cho, P. Roussel, B. Kaczer, R. Degraeve, J. Franco, M. Aoulaiche, T. Chiarella, T. Kauerauf, N. Horiguchi, G. Groeseneken, Channel hot carrier degradation mechanism in long/short channel n-FinFETs. IEEE Trans. Electron Devices 60(12), 4002–4007 (2013)

    Article  Google Scholar 

  22. Jacopo Franco’s chapter in this book

    Google Scholar 

  23. B. Eitan, D. Frohman-Bentchkowsky, J. Shappir, Impact ionization at very low voltages in silicon. J. Appl. Phys. 53(2), 1244–1247 (1982)

    Article  Google Scholar 

  24. P. Su, K.-I. Goto, T. Sugii, C. Hu, A thermal activation view of low voltage impact ionization in MOSFETs. IEEE Electron Device Lett. 23(9), 550–552 (2002)

    Article  Google Scholar 

  25. B. Fischer, A. Ghetti, L. Selmi, R. Bez, E. Sangiorgi, Bias and temperature dependence of homogeneous hot-electron injection from silicon into silicon dioxide at low voltages. IEEE Trans. Electron Devices 44(2), 288–296 (1997)

    Article  Google Scholar 

  26. J.M. Roux, X. Federspiel, D. Roy, P. Abramowitz, Correction of self-heating for HCI lifetime prediction, in IEEE IRPS Proceedings (2007), pp. 281–287

    Google Scholar 

  27. C. Prasad, L. Jiang, D. Singh, M. Agostinelli, C. Auth, P. Bai, T. Eiles, J. Hicks, C. H. Jan, K. Mistry, S. Natarajan, B. Niu, P. Packan, D. Pantuso, I. Post, S. Ramey, A. Schmitz, B. Sell, S. Suthram, J. Thomas, C. Tsai, P. Vandervoorn, Self-heat reliability considerations on Intel’s 22nm Tri-Gate technology, in IEEE IRPS Proceedings (2013), pp. 5D.1.1–5D.1.5

    Google Scholar 

  28. Y.-K. Choi, D. Ha, E. Snow, J. Bokor, T.-J. King, Reliability study of CMOS FinFETs, in IEEE International Electron Devices Meeting (2003), pp. 7.6.1–7.6.4

    Google Scholar 

  29. M. Koyanagi, H. Kaneko, S. Shimizu, Optimum design of n+−n- double-diffused drain MOSFET to reduce hot-carrier emission. IEEE Trans. Electron Devices 32(3), 562–570 (1985)

    Article  Google Scholar 

  30. B.-K. Choi, K.-R. Han, Y.M. Kim, Y.J. Park, J.-H. Lee, Threshold-voltage modeling of body-tied FinFETs (Bulk FinFETs). IEEE Trans. Electron Devices 54(3), 537–545 (2007)

    Article  Google Scholar 

  31. G.V. Groeseneken, Hot carrier degradation and ESD in submicrometer CMOS technologies: how do they interact? IEEE Trans. Device Mater. Reliab. 1(1), 23–32 (2001)

    Article  Google Scholar 

  32. M. Cho, R. Ritzenthaler, R. Krom, Y. Higuchi, B. Kaczer, T. Chiarella, G. Boccardi, M. Togo, N. Horiguchi, T. Kauerauf, G. Groeseneken, Negative bias temperature instability (NBTI) in p-FinFETs with 45-degree substrate rotation. IEEE Electron Device Lett. 34(10), 1211–1213 (2013)

    Article  Google Scholar 

  33. A.N. Tallarico, M. Cho, J. Franco, R. Ritzenthaler, M. Togo, N. Horiguchi, G. Groeseneken, F. Crupi, Impact of the substrate orientation on CHC reliability in n-FinFETs—separation of the various contributions. IEEE Trans. Device Mater. Reliab. 14(1), 52–56 (2014)

    Article  Google Scholar 

  34. J.G. Fossum, J.-W. Yang, V.P. Trivedi, Suppression of corner effects in triple-gate MOSFETs. IEEE Electron Device Lett. 24(12), 745–747 (2003)

    Article  Google Scholar 

  35. R.H. Tu, C. Wann, J.C. King, P.K. Ko, C. Hu, An AC conductance technique for measuring self-heating in SOI MOSFET’s. IEEE Electron Device Lett. 16(2), 67–69 (1995)

    Article  Google Scholar 

  36. D.A. Dallmann, K. Shenai, Scaling constraints imposed by self-heating in sub-micron SO1 MOSFET’s. IEEE Trans. Electron Devices 42(3), 489–496 (1995)

    Article  Google Scholar 

  37. C. Fiegna, Y. Yang, E. Sangiorgi, A.G. O’Neill, Analysis of self-heating effects in ultrathin-body SOI MOSFETs by device simulation. IEEE Trans. Electron Devices 55(1), 233–244 (2008)

    Article  Google Scholar 

  38. R. Rhyner, M. Luisier, Self-heating effects in ultra-scaled Si nanowire transistors, in IEEE International Electron Devices Meeting (2013), pp. 790–793

    Google Scholar 

  39. D. Vasileska, K. Raleva, A. Hossain, S.M. Goodnick, Current progress in modeling self-heating effects in FD SOI devices and nanowire transistors. J. Comput. Electron 11, 238–248 (2012)

    Article  Google Scholar 

  40. W. Liu, M. Asheghi, Phonon-boundary scattering in ultra-thin single crystal silicon layers. Appl. Phys. Lett. 84, 3819–3821 (2004)

    Article  Google Scholar 

  41. J. Lee, A. Liao, E. Pop, W.P. King, Electrical and thermal coupling to a single-wall carbon nanotube device using an electrothermal nanoprobe. Nano Lett. 9(4), 1356–1361 (2009)

    Article  Google Scholar 

  42. N. Beppu, S. Oda, K. Uchida, Experimental study of self-heating effect (SHE) in SOI MOSFETs: accu-rate understanding of temperatures during AC conductance measurement, proposals of 2ω method and modified pulsed IV, in IEEE International Electron Devices Meeting (2012), pp. 642–645

    Google Scholar 

  43. A. Scholten, G.D.J. Smit, R.M.T. Pijper, L.F. Tiemeijer, H.P. Tuinhout, J.-L.P.J. van der Steen, A. Mercha, M. Braccioli, D.B.M. Klaassen, Experimental assessment of self-heating in SOI FinFETs, in IEEE International Electron Devices Meeting (2009), pp. 305–308

    Google Scholar 

  44. B.M. Tenbroeck, M.S.L. Lee, W. Redman-White, R.J.T. Bunyan, M.J. Uren, Self-heating effects in SOI MOSFET’s and their measurement by small signal conductance techniques. IEEE Trans. Electron Devices 43(12), 2240–2248 (1996)

    Article  Google Scholar 

  45. S. Makovejev, S. Olsen, J.-P. Raskin, RF extraction of self-heating effects in FinFETs. IEEE Trans. Electron Devices 58(10), 3335–3341 (2011)

    Article  Google Scholar 

  46. K. Raleva, E. Bury, D. Vasileska, B. Kaczer, Uncovering the temperature of the hotspot in nanoscale devices, in Accepted for 17th International Workshop on Computational Electronics, Paris (2014)

    Google Scholar 

  47. T. Takahashi, T. Matsuki, T. Shinada, Y. Inoue, K. Uchida, Comparison of self-heating effect (SHE) in short-channel bulk and ultra-thin BOX SOI MOSFETs: impacts of doped well, ambient temperature, and SOI/BOX thicknesses on SHE, in IEEE International Electron Devices Meeting (2013), pp. 184–187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moonju Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cho, M., Bury, E., Kaczer, B., Groeseneken, G. (2015). Channel Hot Carrier Degradation and Self-Heating Effects in FinFETs. In: Grasser, T. (eds) Hot Carrier Degradation in Semiconductor Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-08994-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08994-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08993-5

  • Online ISBN: 978-3-319-08994-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics