Skip to main content
Log in

The effect of sharp-corner emendation of irregular FinFETs on electrothermal characteristics

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The present study is an attempt to investigate the impacts of channel modification and the capabilities of amended sharp-corner FinFETs from thermal and electrical points of view. It also provides a new definition for gate-oxide and channel capacitance of irregular fin shape by replacing the contribution of each area in the total gate capacitance expression of the square FinFET. This definition determines the subthreshold reliability of the amended sharp-corner FinFETs. As a function of gate insulator capacitance, channel capacitance, depletion charge per unit length, and fin area, mobile electron concentrations are derived for amended sharp-corner FETs by assuming an arbitrary channel potential profile to simplify the formulation. The comparison results demonstrate that an amended FinFET with a partial cylindrical shape at the top region of fin (PC-FinFET) by higher gate controllability adjusts the hot carrier effects, reduces DIBL, improves the subthreshold characteristics as well as short-channel effects, while the amended-channel FinFET with extended round-bottom region reduces the self-heating effects, attenuates the thermal resistance, and moderates the thermal dependence of electrical characteristics. Therefore, it is deduced that modified-channel FinFET (MC-FinFET), with both cylindrical top and extended bottom regions, has improved thermal and electrical stabilities in both subthreshold and saturation modes in comparison with a conventional thin-film FinFET. The superiority of the MC-FinFET, which was evaluated with three-dimensional simulations, demonstrates the ability of this structure as a high-performance device over the other eliminated sharp-corner FinFETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hisamoto, D., Lee, W.-C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., Anderson, E., King, T.-J., Bokor, J., Chenming, H.: FinFET—a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 47(12), 2320–2325 (2000)

    Article  Google Scholar 

  2. Choi, J.A., Kwon, L., You, S.J., Lee, Y.-J., Soo, Y.L., Geon, U.L., Lee, S.-H., Min, C.S., Kim, D.-C., Young, M.L., Su, G.B., Yang, J.-H., Shigenobu, M., Lee, N., Kang, H., Suh, K.-P.: Large scale integration and reliability consideration of triple gate transistors. In: IEEE Technical Digest of International Electron Devices Meeting (IEDM), pp. 647–650 (2004)

  3. Yu, Z., Chang, S., Wang, H., He, J., Huang, Q.: Effects of Fin shape on sub-10 nm FinFETs. J. Comput. Electron. 14, 515–523 (2015)

    Article  Google Scholar 

  4. Abraham, D., George, A., Gopinadh, D.: Effect of Fin shape on GIDL and subthreshold leakage currents. Int. J. Sci. Technol. Eng. 1(10), 135–145 (2015)

    Google Scholar 

  5. Anand, Sunny, Sarin, R.K.: An analysis on Am bipolar reduction techniques for charge plasma based tunnel field effect transistors. J. Nanoelectron. Optoelectron. 11(4), 543–550 (2016)

    Article  Google Scholar 

  6. Anand, Sunny, Sarin, R.K.: Analog and RF performance of doping-less tunnel FETs with \(\text{ Si }_ {0.55}\text{ Ge }_{0.45}\) source. J. Comput. Electron. 15(3), 850–856 (2016)

    Article  Google Scholar 

  7. Ritzehnthaler, R., Faynot, O., Jahan, C., Kuriyama, A., Deleonibus, S., Cristoloveanu, S.: Coupling effects in FinFETs and triple-gate FETs. In: Proceedings of the 7th European Workshop ULIS, pp. 25–28 (2006)

  8. Ruiz, F.J.G., Godoy, A., Gámiz, F., Sampedro, C., Donetti, L.: A comprehensive study of the corner effects in Pi-gate MOSFETs including quantum effects. IEEE Trans. Electron Devices 54(12), 3369–3377 (2007)

    Article  Google Scholar 

  9. Fossum, J.G., Yang, J.-W., Trivedi, V.P.: Suppression of corner effects in triple-gate MOSFETs. IEEE Electron Devices Lett. 24(12), 745–747 (2003)

    Article  Google Scholar 

  10. Collaert, N., et al.: Multi-gate devices for the 32 nm technology node and beyond. Solid State Electron. 52(9), 1291–1296 (2008)

    Article  Google Scholar 

  11. Dixit, A., Kottantharayil, A., Collaert, N., Goodwin, M., Jurczak, M., De Meyer, K.: Analysis of the parasitic S/D resistance in multiple-gate FETs. IEEE Trans. Electron Devices 52(6), 1132–1140 (2005)

    Article  Google Scholar 

  12. Lederer, D., Parvais, B., Mercha, A., Collaert, N., Jurczak, M., Raskin, J.-P., Decoutere, S.: Dependence of FinFET RF performance on fin width. In: Proceedings of the 6th Topical Meeting Silicon Monolithic Integrated Circuits RF System, SiRF, pp. 8–11 (2006)

  13. Auth, C. et al.: A 22 nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In: Proceedings of the IEEE Symposium on Very Large Scale Integrated System (VLSI) Technology, pp. 131–132 (2012)

  14. Han, K.-R., Choi, B.-K., Kwon, H.-I., Lee, J.-H.: Design of bulk Fin-type field-effect transistor considering gate work-function. Jpn. J. Appl. Phys. 47(6R), 4385–4391 (2008)

    Article  Google Scholar 

  15. Tawfik, S.A., Kursun, V.: Multi-threshold voltage FinFET sequential circuits. IEEE Trans. Very Large Scale Integr. Syst. 19(1), 151–156 (2011)

    Article  Google Scholar 

  16. Sheu, B.J. et al.: Enabling circuit design using FinFETs through close ecosystem collaboration. In: Proceedings of the Symposium on Very Large Scale Integrated (VLSI) Technology, pp. T110–T111 (2013)

  17. Lin, C.-H. et al.: Channel doping impact on FinFETs for 22 nm and beyond. In: Proceedings of the Symposium on Very Large Scale Integrated (VLSI) Technology, pp. 15–16 (2012)

  18. Wu, Xusheng, Chan, Philip C.H., Chan, Mansun: Impacts of nonrectangular fin cross section on the electrical characteristics of FinFET. IEEE Trans. Electron Devices 52(1), 63–68 (2005)

    Article  Google Scholar 

  19. Giacomini, R., Martino, J.A.: Trapezoidal cross-sectional influence on FinFET threshold voltage and corner effects. J. Electrochem. Soc. 155(4), H213–H217 (2008)

    Article  Google Scholar 

  20. Liu, Y., et al.: Cross-sectional channel shape dependence of short-channel effects in fin-type double-gate metal oxide semiconductor field-effect transistors. Jpn. J. Appl. Phys. 43(4B), 2151–2155 (2004)

    Article  Google Scholar 

  21. Buhler, R.T., Martino, J.A., Agopian, P.G.D., Giacomini, R., Simoen, E., Claeys, C.: Fin shape influence on the analog performance of standard and strained MuGFETs. In: IEEE International on SOI Conference (SOI), San Diego, vol. 1–2 (2010)

  22. Mehrad, M., Orouji, A.A.: A new nanoscale and high temperature field effect transistor: Bi level FinFET. Physica E 44, 654 (2011)

    Article  Google Scholar 

  23. Mehrad, M., Orouji, A.A.: Partially cylindrical fin field-effect transistor: a novel device for nanoscale applications. IEEE Trans. Device Mater. Reliab. 10, 271 (2010)

    Article  Google Scholar 

  24. Karimi, Fa, Orouji, A.A.: A novel nanoscale fin field effect transistor by amended channel: investigation and fundamental physics. Physica E 74, 65 (2015)

    Article  Google Scholar 

  25. Karimi, Fa, Orouji, A.A.: Electro-thermal analysis of non-rectangular FinFET and modeling of fin shape effect on thermal resistance. Physica E 90, 218 (2017)

    Article  Google Scholar 

  26. Kretz, J., Dreeskornfeld, L., Schroter, R., Landgraf, E., Hofmann, F., Ro sner, W.: Realization and characterization of nano-scale FinFET devices. Solid State Micro Electron. Eng. 73, 803 (2004)

    Google Scholar 

  27. Okano, K. et al.: Process integration technology and device characteristics of CMOS FinFET on bulk silicon substrate with sub-10 nm fin width and 20 nm gate length. In: Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, pp. 721–724, IEEE

  28. Jiménez, D., Saenz, J.J., Iñiguez, B., Suñé, J., Marsal, L.F., Pallares, J.: Modeling of nanoscale gate-all-around MOSFETs. IEEE Electron Device Lett. 25(5), 314–316 (2004)

    Article  Google Scholar 

  29. Ruiz, F., Tienda-Luna, I., Godoy, A., Donetti, L., Gamiz, F.: Equivalent oxide thickness of trigate SOI MOSFETs with high-kappa insulators. IEEE Trans. Electron Devices 56(11), 2711–2719 (2009)

    Article  Google Scholar 

  30. Chen, T.: Determination of the capacitance, inductance, and characteristic impedance of rectangular lines. IRE Trans. Microw. Theory Tech. 8(5), 510–519 (1960)

    Article  Google Scholar 

  31. Tienda-Luna, I.M., Ruiz, F.J.G., Donetti, L., Godoy, A., Gámiz, F.: Modeling the equivalent oxide thickness of surrounding gate SOI devices with high-\(\kappa \) insulators. Solid State Electron. 52(12), 1854–1860 (2008)

    Article  Google Scholar 

  32. Duarte, J.P., Choi, S., Moon, D., Ahn, J., Kim, J., Kim, S., Choi, Y.: A universal core model for multiple-gate field-effect transistors. Part I: charge model. IEEE Trans. Electron Devices 60(2), 840–847 (2013)

    Article  Google Scholar 

  33. Dunga, M.: Nanoscale CMOS Modeling. University of California, Berkeley (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Orouji.

Appendix

Appendix

The first step of the universal core approach [32] for a double gate FinFET is utilizing the arbitrary potential assumption, instead of differential form of Poisson’s equation as expressed in Eq. (19a), [(a) for rectangular and (b) for cylindrical cross sections].

$$\begin{aligned} \varphi \left( x \right)= & {} \left( {2\left| x \right| /W_{\mathrm{Si}} } \right) \times \left( {\varphi _s -\varphi _0 } \right) +\varphi _0 \end{aligned}$$
(19a)
$$\begin{aligned} \varphi \left( r \right)= & {} \left( {r/R} \right) \times \left( {\varphi _s -\varphi _0 } \right) +\varphi _0 \end{aligned}$$
(19b)

where \({\varphi }_{s }\) and \({\varphi }_{0 }\) are the surface and center potentials. Then, Using Gauss’s law and the boundary conditions at each interface, the relation between the surface potential, center potential and gate voltage is determined by Eq. (20):

$$\begin{aligned} \frac{\varepsilon _\mathrm{ox} }{t_\mathrm{ox} }\left( {V_\mathrm{G} -V_\mathrm{FB} -\varphi _s } \right) =\varepsilon _\mathrm{si} \frac{d\varphi }{dx}|_{{{x}}={W}_{{\mathrm{si}}/2} } =\frac{2\varepsilon _\mathrm{si} }{W_\mathrm{si} } \Delta \varphi =-\frac{Q_\mathrm{t} }{2} \end{aligned}$$
(20)

where \(t_\mathrm{ox}\) is the oxide thickness, \(V_\mathrm{FB}\) is the flat-band voltage, and \(Q_{\mathrm{t}}\) is the total charge density in channel. Then, by utilizing Boltzmann’s statistics for the carriers by Eq. (21) and using the channel potential, we can obtain the charge density and the total charge per unit area in the channel by Eq. (22):

$$\begin{aligned} \rho \left( x \right)= & {} -qN_\mathrm{A} -q\frac{n_i^2 }{N_\mathrm{A} }\hbox {e}^{\left( {\varphi \left( x \right) -V} \right) /v_T } \end{aligned}$$
(21)
$$\begin{aligned} Q_\mathrm{total}= & {} Q_d +Q_\mathrm{in} =-qN_\mathrm{A} W_{\mathrm{Si}} \nonumber \\&-\,q\frac{n_i^2 }{N_\mathrm{A} }\mathop \int \limits _{-W_{\mathrm{Si}/2} }^{W_{\mathrm{Si}/2} } \hbox {e}^{\left( {\varphi -V} \right) /v_T }\hbox {d}x\nonumber \\= & {} -qN_\mathrm{A} W_{\mathrm{Si}} -q\frac{n_i^2 W_{\mathrm{Si}} }{N_\mathrm{A} }\hbox {e}^{\frac{\varphi _0 -V}{v_T }}\left( {\hbox {e}^{\frac{\Delta \varphi }{v_T }}-1} \right) \end{aligned}$$
(22)

where V is the electron quasi-Fermi potential,\( Q_{\mathrm{e}}\) and \( Q_{\mathrm{d} }\) are the total mobile electron and depletion charges per unit area. With the help of the Gauss’s law and charge density, surface and center potentials can be determined. Finally by replacing \({\Delta } \varphi \) by \({- (W_\mathrm{si} / 4 \varepsilon _\mathrm{si}) \times Q}_{ t}\) from (20) in Eq (22)\({, \varphi }_{\mathrm{s}}\) as a function of \(Q_{\mathrm{e}}\) and \( Q_{\mathrm{d}}\) is determined. When \({ \varphi }_{\mathrm{s}}\) is obtained from the total charge equation and replaced in Gauss’s law, a relation between total mobile electron charge per unit area \((Q_{\mathrm{e}})\) in the channel and gate voltage is determined by Eq. (23)

$$\begin{aligned}&V_{\mathrm{G}} -V_\mathrm{FB} +\frac{\hbox {t}_{\mathrm{ox}} }{2{\varepsilon }_{\mathrm{ox}} }{Q}_{\mathrm{d}} -V\nonumber \\&\quad =-\frac{\hbox {t}_{\mathrm{ox}} }{2{\varepsilon }_{\mathrm{ox}} }{Q}_{\mathrm{e}} \nonumber \\&\qquad +v_{\mathrm{T}} \ln \left( {\frac{-\frac{{Q}_{\mathrm{e}} \left( {{Q}_{\mathrm{e}} +{Q}_{\mathrm{d}} } \right) }{2v_{\mathrm{T}} {\varepsilon }_{{\mathrm{si}}} /W_{\mathrm{Si}} }}{q\frac{n_i^2 }{N_\mathrm{A} }W_{\mathrm{Si}} \left[ {1-\hbox {exp}\frac{W_{\mathrm{Si}} }{2v_{\mathrm{T}} {\varepsilon }_{{\mathrm{si}}} }({Q}_{\mathrm{e}} +{Q}_{\mathrm{d}} )} \right] }} \right) \end{aligned}$$
(23)

Using this approach for cylindrical arbitrary potential by Eq. (19b) in the channel of the cylindrical cross section, to obtain the cylindrical cross section’s charge model, then analyzing and Comparing the results of different regular geometrical cross sections (e.g., DG and Cy-GAA-FETs) mobile charge model can be generalized. Therefore, a single expression that relates the mobile electron charge density per unit length \((Q_{\mathrm{e}})\) with the applied gate voltage is written in the following form:

$$\begin{aligned}&V_\mathrm{G} -V_\mathrm{FB} +\frac{Q_{\mathrm{d},n} }{C_{\mathrm{g},n} }-V\nonumber \\&\quad =-\frac{Q_{\mathrm{e},n} }{C_{\mathrm{g},n} }\nonumber \\&\qquad +v_T \ln \left( {\frac{-Q_{\mathrm{e},n} }{q\frac{n_i^2 }{N_\mathrm{A} }A_{\mathrm{ch},n} }\frac{-\left( {Q_{\mathrm{e},n} +Q_{\mathrm{d},n} } \right) /v_T C_{\mathrm{ch},n} }{1-exp\frac{Q_{\mathrm{e},n} +Q_{\mathrm{d},n} }{v_T C_{\mathrm{ch},n} }}} \right) \nonumber \\ \end{aligned}$$
(24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, F., Orouji, A.A. The effect of sharp-corner emendation of irregular FinFETs on electrothermal characteristics. J Comput Electron 17, 613–624 (2018). https://doi.org/10.1007/s10825-018-1155-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1155-3

Keywords

Navigation