Advertisement

Choquet Expected Utility Representation of Preferences on Generalized Lotteries

  • Giulianella Coletti
  • Davide Petturiti
  • Barbara Vantaggi
Part of the Communications in Computer and Information Science book series (CCIS, volume 443)

Abstract

The classical von Neumann–Morgenstern’s notion of lottery is generalized by replacing a probability distribution on a finite support with a belief function on the power set of the support. Given a partial preference relation on a finite set of generalized lotteries, a necessary and sufficient condition (weak rationality) is provided for its representation as a Choquet expected utility of a strictly increasing utility function.

Keywords

Generalized lottery preference relation belief function probability envelope Choquet expected utility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chateauneuf, A., Cohen, M.: Choquet expected utility model: a new approach to individual behavior under uncertainty and social choice welfare. In: Fuzzy Meas. and Int.: Th. and App., pp. 289–314. Physica, Heidelberg (2000)Google Scholar
  2. 2.
    Coletti, G., Regoli, G.: How can an expert system help in choosing the optimal decision? Th. and Dec. 33(3), 253–264 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Coletti, G., Scozzafava, R.: Toward a General Theory of Conditional Beliefs. Int. J. of Int. Sys. 21, 229–259 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Coletti, G., Scozzafava, R., Vantaggi, B.: Inferential processes leading to possibility and necessity. Inf. Sci. 245, 132–145 (2013)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Dempster, A.P.: Upper and Lower Probabilities Induced by a Multivalued Mapping. Ann. of Math. Stat. 38(2), 325–339 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Denneberg, D.: Non-additive Measure and Integral. Theory and Decision Library: Series B, vol. 27. Kluwer Academic, Dordrecht (1994)CrossRefzbMATHGoogle Scholar
  7. 7.
    Ellsberg, D.: Risk, Ambiguity and the Savage Axioms. Quart. Jour. of Econ. 75, 643–669 (1961)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fagin, R., Halpern, J.Y.: Uncertainty, belief and probability. Comput. Int. 7(3), 160–173 (1991)CrossRefGoogle Scholar
  9. 9.
    Gale, D.: The Theory of Linear Economic Models. McGraw Hill (1960)Google Scholar
  10. 10.
    Gilboa, I., Schmeidler, D.: Additive representations of non-additive measures and the Choquet integral. Ann. of Op. Res. 52, 43–65 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Jaffray, J.Y.: Linear utility theory for belief functions. Op. Res. Let. 8(2), 107–112 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Mc Cord, M., de Neufville, R.: Lottery Equivalents: Reduction of the Certainty Effect Problem in Utility Assessment. Man. Sci. 23(1), 56–60 (1986)CrossRefGoogle Scholar
  13. 13.
    Miranda, E., de Cooman, G., Couso, I.: Lower previsions induced by multi-valued mappings. J. of Stat. Plan. and Inf. 133, 173–197 (2005)CrossRefzbMATHGoogle Scholar
  14. 14.
    Quiggin, J.: A Theory of Anticipated Utility. J. of Ec. Beh. and Org. 3, 323–343 (1982)CrossRefGoogle Scholar
  15. 15.
    Savage, L.: The foundations of statistics. Wiley, New York (1954)Google Scholar
  16. 16.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)Google Scholar
  17. 17.
    Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57(3), 571–587 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Schmeidler, D.: Integral representation without additivity. Proc. of the Am. Math. Soc. 97(2), 255–261 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Smets, P.: Decision making in the tbm: the necessity of the pignistic transformation. Int. J. Approx. Reasoning 38(2), 133–147 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press (1944)Google Scholar
  21. 21.
    Walley, P.: Statistical reasoning with imprecise probabilities. Chapman & Hall, London (1991)Google Scholar
  22. 22.
    Wakker, P.: Under stochastic dominance Choquet-expected utility and anticipated utility are identical. Th. and Dec. 29(2), 119–132 (1990)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Giulianella Coletti
    • 1
  • Davide Petturiti
    • 2
  • Barbara Vantaggi
    • 2
  1. 1.Dip. Matematica e InformaticaUniversità di PerugiaItaly
  2. 2.Dip. S.B.A.I.Università di Roma “La Sapienza”Italy

Personalised recommendations