Skip to main content

Origin of Nonlinear Viscoelasticity in Filled Rubbers: Theory and Practice

  • Chapter
  • First Online:
Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites

Part of the book series: Advances in Polymer Science ((POLYMER,volume 264))

Abstract

The present chapter is written as an introduction towards this book on nonlinear viscoelasticity of rubber composites and nanocomposites. Rather than introducing the concept of the book to the readers this chapter reveals the basics behind rubber viscoelasticity and explains both linearity and nonlinearity from this behavior. Various filler reinforced rubbers are introduced emphasising the flow behavior of such nanocomposites. Major mathematical models proposed by Kraus, Huber and Vilgis and Maier and Goritz for the ‘Payne Effect’ are briefly addressed based on the filler matrix interactions existing in the composite systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ponnamma D, Chirayil CJ, Sadasivuni KK, Somasekharan L, Yaragalla S, Abraham J, Thomas S (2013) Special purpose elastomers: synthesis, structure-property relationship, compounding, processing and applications. Advances in elastomers I. Adv Struct Mater 11:47–82

    Article  Google Scholar 

  2. Berins ML (1991) Plastics engineering. Handbook of the Society of Plastics Industry Inc. Chapman & Hall, New York

    Google Scholar 

  3. Hishfeld P (1937) Trans Am Soc Mech Eng 59:471

    Google Scholar 

  4. Schapery R (1987) Deformation and fracture characterization of inelastic composite materials using potentials. Polymer Eng Sci 27:63–76

    Article  CAS  Google Scholar 

  5. Schapery R (1990) On some path independent integrals and their use in fracture of nonlinear viscoelastic media. Int J Fract 42:189–207

    Article  Google Scholar 

  6. Park S, Schapery R (1997) A viscoelastic constitutive model for particulate composites with growing damage. Int J Solids Struct 34:931–947

    Article  Google Scholar 

  7. Ha K, Schapery R (1997) A three-dimensional viscoelastic constitutive model for particulate composites with growing damage and its experimental validation. Int J Solids Struct 35:3497–3517

    Article  Google Scholar 

  8. Abdel-Tawab K, Weitsman Y (1998) A coupled viscoelasticity/damage model with application to swirl-mat composites. Int J Damage Mech 7:351–380

    Article  Google Scholar 

  9. Bocchieri R (2001) Time-dependent deformation of a nonlinear viscoelastic rubber-toughened fiber composite with growing damage. Ph.D. thesis, The University of Texas at Austin

    Google Scholar 

  10. Green AE, Adkins JE (1960) Large elastic deformations. Clarendon, Oxford

    Google Scholar 

  11. Hart-Smith LJ, Crisp JDC (1967) Large elastic deformations of thin rubber membranes. Int J Eng Sci 5:1–24

    Article  CAS  Google Scholar 

  12. Klingbeil WW, Shield RT (1964) Some numerical investigations on empirical strain energy functions in the large axisymmetric extensions of rubber membranes. Zeitschrift ur Angewandte Mathemathik und Physik 15:608–629

    Article  Google Scholar 

  13. Oden JT, Sato T (1967) Finite strains and displacements of elastic membranes by the finite element method. Int J Solids Struct 3:471–488

    Article  Google Scholar 

  14. Wineman A (1978) On axisymmetric deformations of nonlinear viscoelastic membranes. J Non-Newtonian Fluid Mech 4:249–260

    Article  CAS  Google Scholar 

  15. Feng WW (1992) Viscoelastic behavior of elastomeric membranes. J Appl Mech 59:S29–S34

    Article  Google Scholar 

  16. Long term performance of polymers. http://www.me.umn.edu/labs/composites/Projects/Polymer%20Heat%20Exchanger/Creep%20description.pdf

    Google Scholar 

  17. Shrivastava S, Tang J (1993) Large deformation finite element analysis of non-linear viscoelastic membranes with reference to thermoforming. J Strain Anal 28(1):31–51

    Article  Google Scholar 

  18. Jenkins CH, Leonard JW (1991) Nonlinear dynamic response of membranes: state of the art. Appl Mech Rev 44(7):319–328

    Article  Google Scholar 

  19. Jenkins CH (1996) Nonlinear dynamic response of membranes: state of the art update. Appl Mech Rev 49(10):S41–S48

    Article  Google Scholar 

  20. Hartmann S (2001) Numerical studies on the identification of the material parameters of Rivlin’s hyperelasticity using tension-torsion tests. Acta Mech 148(1–4):129–155

    Article  Google Scholar 

  21. Hahn HT, Tsai SW (1973) Nonlinear elastic behavior of unidirectional composite laminae. J Comp Mater 7:102–118

    Article  CAS  Google Scholar 

  22. Schapery RA, Sicking DL (1995) On nonlinear constitutive equations for elastic and viscoelastic composites with growing damage. In: Baer A (ed) Mechanical behavior of materials. Delft University Press, Delft, pp 45–76

    Google Scholar 

  23. Schapery RA (1997) Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech Time Depend Mater 1:209–240

    Article  Google Scholar 

  24. Schapery RA (1999) Nonlinear viscoelastic and viscoplastic constitutive equations with growing damage. Int J Fract 97:33–66

    Article  Google Scholar 

  25. Mienerv LA, Schaoerv RA (1991) Viscoelastic and nonlinear adherend effects in bonded composite joints. J Adhes 34:17–40

    Article  Google Scholar 

  26. Schapery RA (1989) Mechanical characterization and analysis of inelastic composite laminates with growing damage. Mech Comp Mater Struct 100:1–9

    Google Scholar 

  27. Payne AR (1965) Reinforcement of elastomers. J Appl Polym Sci 8:2661–2680

    Article  Google Scholar 

  28. Kraus G (1984) Mechanical losses in carbon black filled rubbers. J Appl Polym Sci Appl Polym Symp 39:75–92

    CAS  Google Scholar 

  29. Huber G, Vilgis TA (2002) On the mechanism of hydrodynamic reinforcement in elastic composites. Macromolecules 35:9204–9210

    Article  CAS  Google Scholar 

  30. Heinrich G, Kluppel M, Vilgis T (2002) Reinforcement of elastomers. Curr Opin Solid State Mater Sci 6:195–203

    Article  CAS  Google Scholar 

  31. Kluppel M, Schuster R, Heinrich G (1997) Structure and properties of reinforcing fractal filler networks in elastomers. Rubber Chem Technol 70:243–255

    Article  CAS  Google Scholar 

  32. Funt JM (1980) Rubber mixing. Rubber Chem Technol 53:772–779

    Article  CAS  Google Scholar 

  33. Maier PG, Göritz D (1996) Molecular interpretation on the Payne effect. Kautsch Gummi Kunstst 49:18–21

    CAS  Google Scholar 

  34. Sternstein SS, Zhu AJ (2002) Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 35:7262–7273

    Article  CAS  Google Scholar 

  35. Zhu AJ, Sternstein SS (2003) Nonlinear viscoelasticity of nanofilled polymers: interfaces, chain statistics and properties recovery kinetics. Compos Sci Technol 63:1113–1126

    Article  CAS  Google Scholar 

  36. Marrone M, Montanari T, Busca G, Conzatti L, Costa G, Castellano M, Turturro A (2004) A Fourier Transform Infrared (FTIR) study of the reaction of Triethoxysilane (TES) and Bis[3-triethoxysilylpropyl]tetrasulfane (TESPT) with the surface of amorphous silica. J Phys Chem B 108:3563–3572

    Article  CAS  Google Scholar 

  37. Castellano M, Conzatti L, Turturro A, Costa G, Busca G (2007) Influence of the silane modifiers on the surface thermodynamic characteristics and dispersion of the silica into elastomer compounds. J Phys Chem B 111:4495–4502

    Article  CAS  Google Scholar 

  38. Clement F, Bokobza L, Monnerie L (2005) Investigation of the Payne effect and its temperature dependence on silica-filled polydimethylsiloxane networks. Part I: Experimental results. Rubber Chem Technol 78:211–231

    Article  CAS  Google Scholar 

  39. Ramier J, Gauthier C, Chazeau L, Stelandre L, Guy L (2007) Payne effect in silica-filled styrene–butadiene rubber: influence of surface treatment. J Polym Sci B Polym Phys 45:286–298

    Article  CAS  Google Scholar 

  40. Cassagnau P (2003) Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state. Polymer 44:2455–2462

    Article  CAS  Google Scholar 

  41. Sun J, Song Y, Zheng Q, Tan H, Yu J, Li H (2007) Nonlinear rheological behavior of silica filled solution-polymerized styrene butadiene rubber. J Polym Sci B Polym Phys 45:2594–2602

    Article  CAS  Google Scholar 

  42. Wang SQ, Inn YW (1994) Stress-induced interfacial failure in filled polymer melts. Rheol Acta 33:108–116

    Article  CAS  Google Scholar 

  43. Simhambhatla M, Leonov AI (1995) On the rheological modeling of filled polymers with particle-matrix interactions. Rheol Acta 34:329–338

    Article  CAS  Google Scholar 

  44. Leger L, Raphael E, Henet H (1999) Surface-anchored polymer chains: their role in adhesion and friction. Adv Polym Sci 138:185–225

    Article  CAS  Google Scholar 

  45. Yarin AL, Graham MD (1998) A model for slip at polymer/solid interfaces. J Rheol 42:1491

    Article  CAS  Google Scholar 

  46. Granick S, Hu H (1994) Nanorheology of confined polymer melts. 1. Linear shear response at strongly adsorbing surfaces. Langmuir 10:3857–3866

    Article  CAS  Google Scholar 

  47. Peanasky J, Cai LL, Granick S (1994) Nanorheology of confined polymer melts. 3. Weakly adsorbing surfaces. Langmuir 10:3874–3879

    Article  CAS  Google Scholar 

  48. Yatsuyanagi F, Kaidou H, Ito M (1999) Relationship between viscoelastic properties and characteristics of filler-gel in filled rubber system. Rubber Chem Technol 4:657–672

    Article  Google Scholar 

  49. Berriot J, Lequeux F, Montes H, Monnerie L, Long D, Sotta P (2002) Filler–elastomer interaction in model filled rubbers, a 1H NMR study. J Non Cryst Solids 307:719–724

    Article  Google Scholar 

  50. Berriot J, Montes H, Lequeux F, Long D, Sotta P (2003) Gradient of glass transition temperature in filled elastomers. Europhys Lett 64:50–60

    Article  CAS  Google Scholar 

  51. Montes H, Lequeux F, Berriot J (2003) Influence of the glass transition temperature gradient on the nonlinear viscoelastic behavior in reinforced elastomers. Macromolecules 36:8107–8118

    Article  CAS  Google Scholar 

  52. Merabia S, Sotta P, Long DR (2008) A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects). Macromolecules 41:8252–8266

    Article  CAS  Google Scholar 

  53. Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48:4907–4920

    Article  CAS  Google Scholar 

  54. Zhu ZY, Thompson T, Wang SQ, von Meerwall ED, Halasa A (2005) Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 38:8816–8824

    Article  CAS  Google Scholar 

  55. Malchev PG, Picken SJ (2007) The strain dependence of the dynamic moduli of short fiber reinforced thermoplastic blends. J Rheol 51:235–260

    Article  CAS  Google Scholar 

  56. Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42:339–362

    Article  CAS  Google Scholar 

  57. Cadambi RM, Ghassemieh E (2012) Optimized process for the inclusion of carbon nanotubes in elastomers with improved thermal and mechanical properties. J Appl Polym Sci 124:4993–5001

    CAS  Google Scholar 

  58. Das A, Stockelhuber KW, Jurk R, Saphiannikova M, Fritzsche J, Lorenz H, Kluppel M, Heinrich G (2008) Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene–butadiene and butadiene rubber blends. Polymer 49:5276–5283

    Article  CAS  Google Scholar 

  59. Lopez-Manchado MA, Biagiotti J, Valentini L, Kenny JM (2004) Dynamic mechanical and Raman spectroscopy studies on interaction between single-walled carbon nanotubes and natural rubber. J Appl Polym Sci 92:3394–3400

    Article  CAS  Google Scholar 

  60. Nah C, Lim JY, Cho BH, Hong CK, Gent AN (2010) Reinforcing rubber with carbon nanotubes. J Appl Polym Sci 118:1574–1581

    CAS  Google Scholar 

  61. Bhattacharyya S, Sinturel C, Bahloul O, Saboungi ML, Thomas S, Salvetat JP (2008) Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 46:1037–1045

    Article  CAS  Google Scholar 

  62. Datta S, Naskar K, Bhardwaj YK, Sabharwal S (2011) A study on dynamic rheological characterisation of electron beam crosslinked high vinyl styrene butadiene styrene block copolymer. Polym Bull 66:637–647

    Article  CAS  Google Scholar 

  63. Chen YK, Wang YP, Xu CH (2012) Effects of thermal history on isotactic polypropylene. J Macromol Sci B Phys 51:1921

    Article  CAS  Google Scholar 

  64. Chen YK, Xu CH (2011) Specific nonlinear viscoelasticity behaviors of natural rubber and zinc dimethacrylate composites due to multi-crosslinking bond interaction by using rubber process analyzer 2000. Polym Compos 32:1593–1600

    Article  CAS  Google Scholar 

  65. Subramaniam K, Das A, Heinrich G (2011) Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes. Compos Sci Technol 71:1441–1449

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabu Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ponnamma, D., Thomas, S. (2014). Origin of Nonlinear Viscoelasticity in Filled Rubbers: Theory and Practice. In: Ponnamma, D., Thomas, S. (eds) Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites. Advances in Polymer Science, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-319-08702-3_1

Download citation

Publish with us

Policies and ethics