Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 317))

Abstract

Robust design techniques are essential in any field of engineering design because the working and durability of their pieces of work is always jeopardized by mutable and unpredictable environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Li, C., Zhang, F.: A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193(1), 27–47 (2011)

    Article  Google Scholar 

  3. Ortigueira, M.D.: An introduction to the fractional continuous-time linear systems: the 21st century systems. IEEE Circuits Syst. Mag. 8(3), 19–26 (2008)

    Article  Google Scholar 

  4. Xue, D., Chen, Y.: A comparative introduction of four fractional order controllers. In: Intelligent Control and Automation, 2002. Proceedings of the 4th World Congress on, vol. 4, pp. 3228–3235 (2002)

    Google Scholar 

  5. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38(1–4), 323–337 (2004)

    Article  MATH  Google Scholar 

  6. Oustaloup, A., Mathieu, B., Lanusse, P.: The crone control of resonant plants: application to a flexible transmission. Eur. J. Control 1(2), 113–121 (1995)

    Article  Google Scholar 

  7. Podlubny, I.: Fractional-order systems and pi/sup/spl lambda//d/sup/spl mu//-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bouafoura, M.K., Braiek, N.B.: Pi\(\lambda \)d\(\mu \) controller design for integer and fractional plants using piecewise orthogonal functions. Commun. Nonlinear Sci. Numer. Simul. 15(5), 1267–1278 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Raynaud, H.F., Zergaınoh, A.: State-space representation for fractional order controllers. Automatica 36(7), 1017–1021 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Utkin, V., Guldner, J., Shi, J.: Sliding mode control in electro-mechanical systems. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  11. Edwards, C., Spurgeon, S.K.: Sliding mode control: theory and applications. CRC Press, Boca Raton (1998)

    Google Scholar 

  12. Utkin, V.I.: Sliding modes in control and optimization, vol. 116. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  13. Fridman, L., Levant, A.: Higher order sliding modes. Sliding Mode Control Eng. 11, 53–102 (2002)

    Google Scholar 

  14. Si-Ammour, A., Djennoune, S., Bettayeb, M.: A sliding mode control for linear fractional systems with input and state delays. Commun. Nonlinear Sci. Numer. Simul. 14(5), 2310–2318 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Efe, M.Ö.: Fractional order sliding mode controller design for fractional order dynamic systems. In: New Trends in Nanotechnology and Fractional Calculus Applications, pp. 463–470. Springer (2010)

    Google Scholar 

  16. Ramírez, H.S., Battle, V.F.: A generalized PI sliding mode and PWM control of switched fractional systems. In: Bartolini, G. et al. (eds.) Modern Sliding Mode Control Theory, LNCIS, vol. 375, pp. 201–221. Springer (2008)

    Google Scholar 

  17. Pisano, A., Rapaić, M., Usai, E.: Second-order sliding mode approaches to control and estimation for fractional order dynamics. In: Fridman, L. et al. (eds.) Sliding Modes after the First Decade of the 21st Century, LNCIS, vol. 412, pp. 169–197. Springer (2012)

    Google Scholar 

  18. Cortes, J.: Discontinuous dynamical systems. IEEE Control Syst. Mag. 28(3), 36–73 (2008)

    Google Scholar 

  19. Filippov, A.F.: Differential equations with discontinuous right-hand side. Matematicheskii sbornik 93(1), 99–128 (1960)

    Google Scholar 

  20. Dieci, L., Lopez, L.: Sliding motion in filippov differential systems: theoretical results and a computational approach. Numer. Anal. 47(3), 2023–2051 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Danca, M.F.: Approach of a class of discontinuous dynamical systems of fractional order: Existence of solutions. Int. J. Bifurcat. Chaos 21(11), 3273–3276 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Cernea, A.: Continuous version of filippov’s theorem for fractional differential inclusions. Nonlinear Anal. Theor Methods Appl. 72(1), 204–208 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Danca, M.F.: Numerical approximation of a class of discontinuous systems of fractional order. Nonlinear Dyn. 66(1–2), 133–139 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Aubin, J.P., Cellina, A.: Differential inclusions: Set-valued maps and viability theory. Springer, New York (1984)

    Book  MATH  Google Scholar 

  25. Sabatier, J., Moze, M., Farges, C.: Lmi stability conditions for fractional order systems. Comput. Math. Appl. 59(5), 1594–1609 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Petráš, I.: Stability of fractional-order systems with rational orders: a survey. Fractional Calc. Appl. Anal. 12(3), 269–298 (2009)

    MATH  Google Scholar 

  27. Ahn, H.S., Chen, Y.: Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica 44(11), 2985–2988 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gutman, S., Jury, E.: A general theory for matrix root-clustering in subregions of the complex plane. IEEE Trans. Autom. Control 26(4), 853–863 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  29. Matignon, D., D’Andrea-Novel, B.: Some results on controllability and observability of finite-dimensional fractional differential systems. In: Computational Engineering in Systems Applications, vol. 2, pp. 952–956. Citeseer (1996)

    Google Scholar 

  30. Senejohnny, D.M., Delavari, H.: Active sliding observer scheme based fractional chaos synchronization. Commun. Nonlinear Sci. Numer. Simul. 17(11), 4373–4383 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Efe, M.Ö.: Fractional order systems in industrial automation-a survey. IEEE Trans. Industr. Inf. 7(4), 582–591 (2011)

    Article  Google Scholar 

  32. Chen, Y.Q., Petras, I., Xue, D.: Fractional order control-a tutorial. In: American Control Conference, 2009. ACC’09, pp. 1397–1411 (2009)

    Google Scholar 

  33. Andrzej, D., Wiktor, M.: Point to point control of fractional differential linear control systems. Advances in Difference Equations 2011

    Google Scholar 

  34. Anatoly, A.K., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  35. Kamal, S., Raman, A., Bandyopadhyay, B.: Finite time stabilization of fractional order uncertain chain of integrator: a sliding mode approach. In: Industrial Technology (ICIT), 2012 IEEE International Conference on, pp. 1132–1135 (2012)

    Google Scholar 

  36. Miller, K.S., Ross, B.: An Introduction to The Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, INC (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijnan Bandyopadhyay .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bandyopadhyay, B., Kamal, S. (2015). Sliding Mode Control of Fractional Order Systems. In: Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach. Lecture Notes in Electrical Engineering, vol 317. Springer, Cham. https://doi.org/10.1007/978-3-319-08621-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08621-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08620-0

  • Online ISBN: 978-3-319-08621-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics