Making Better Decisions in Healthcare, Energy Policy, and Education Sectors: Human-Facilitated ILEs in Action

Part of the Understanding Complex Systems book series (UCS)


With the given resources and constraints, the need to make better decisions is at the helm of today’s globalized businesses and organizations. System dynamics simulation -based solutions in general and ILEs in particular have served the education and training needs of decision-makers well in several domains and areas (e.g., health care, education , military, R&D in businesses, energy planning, supply chain management, global warming , poverty, terrorism, new product and services development, policy design, and evaluation).


Dynamic tasks Healthcare management Health care Energy policy Education System dynamics Human-facilitated ILE Healthcare services Waiting lines Heuristics HIV/AIDS Feedback loops Susceptible population Infection rate HAART Simulation Policy scenarios Healthcare professionals ANOVA SIADH-ILE Utility Reliable healthcare Validation Pakistan Canada Structural validity Behavior validity Global warming CO2 concentrations CO2 emissions Bathtub view Power tariffs Resource import dependency Environmental crises CO2 removal Simulation Debriefing In-task Pre-task Post-task Iles Experiential learning Misconceptions SDILE Undergraduate Information system Decision time Task performance Transfer learning Semester Training programs Workshop settings 


  1. 1.
    Abada, I., Briat, V., Massol, O.: Construction of a fuel demand function portraying inter fuel substitution, a system dynamics approach. Energy 49(1), 240–251 (2013)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Adelino, P., João, S.: Generation expansion planning (GEP)—a long-term approach using system dynamics and genetic algorithms (GAs). Energy 2011(36), 5180–5199 (2011)Google Scholar
  3. 3.
    Adobor, H., Daneshfar, A.: Management simulations: determining their effectiveness. J. Manag. Dev. 25(2), 151–168 (2006)CrossRefGoogle Scholar
  4. 4.
    Alessi, S.: Designing educational support in system dynamics-based interactive learning environments. Simul. Gaming 31(2), 178–196 (2000)CrossRefGoogle Scholar
  5. 5.
    Alessi, S.M., Trollip, S.R.: Multimedia for Learning: Methods and Development, 3rd edn. Allyn & Bacon, Boston (2001)Google Scholar
  6. 6.
    Anand, S., Vrat, P., Dahiya, R.P.: Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry. J. Environ. Manage. 79, 83–398 (2005)Google Scholar
  7. 7.
    Ansari, N., Seifi, A.: A system dynamics analysis of energy consumption and corrective policies in Iranian iron and steel industry. Energy 43, 334–343 (2012)CrossRefGoogle Scholar
  8. 8.
    Assili, M., Javidi, H., Ghazi, R.: An improved mechanism for capacity payment based on system dynamics modeling for investment planning in competitive electricity environment. Energy Policy 36(10), 3703–3713 (2008)CrossRefGoogle Scholar
  9. 9.
    Atun, R.: Health systems, systems thinking and innovation. Health Policy Plann. 27, iv4–iv8 (2012)CrossRefGoogle Scholar
  10. 10.
    Atun, R., Lebcir, R., McKee, M., Habicht, K., Coker, R.: Impact of joined-up HIV harm reduction and multidrug resistant tuberculosis control programs in Estonia: system dynamics simulation model. Health Policy 81, 207–217 (2007)CrossRefGoogle Scholar
  11. 11.
    Barlas, Y.: Multiple tests for validations of system dynamics type of simulation models. Eur. J. Oper. Res. 42(1), 59–87 (1989)CrossRefMATHGoogle Scholar
  12. 12.
    Barnett, S., Ceci, S.: When and where do we apply what we learn? A taxonomy for far transfer. Psychol. Bull. 128(4), 612–637 (2002)CrossRefGoogle Scholar
  13. 13.
    Bassi, M., Deenapanray, P., Davidsen, P.: Energy policy panning for climate-resilient low-carbon development. In: Qudrat-Ullah, H. (ed.) Energy Policy Modeling in 21st Century, pp. 125–156. Springer, USA (2013)CrossRefGoogle Scholar
  14. 14.
    Bun, D., Larsen, E.: Sensitivity reserve margin to factors influencing investment behavior in the electricity market of England and Wales. Energy Policy 29, 420–429 (1992)CrossRefGoogle Scholar
  15. 15.
    C.I.: Climate interactive. Accessed 7 July 2013
  16. 16.
    Dangerfield, B., Fang, Y., Roberts, C.: Model-based scenarios for the epidemiology of HIV/AIDS: the consequences of highly active antiretroviral therapy. Syst. Dyn. Rev. 17(2), 119–150 (2001)CrossRefGoogle Scholar
  17. 17.
    Davidsen, P., Sterman, J., Richardson, G.: A petroleum life cycle model for the U.S. with endogenous technology, exploration, recovery, and demand. Syst. Dyn. Rev. 6(1), 66–93 (1990)CrossRefGoogle Scholar
  18. 18.
    Davidsen, P.I.: Educational features of the system dynamics approach to modeling and simulation. J. Struct. Learn. 12(4), 269–290 (1996)Google Scholar
  19. 19.
    Duffy, T., Cunningham, D.: Constructivism: implications for the design and delivery of instruction. In: Jonassen, D. (ed.) Handbook of Research on Educational Communications and Technology. Simon & Schuster, New York (1996)Google Scholar
  20. 20.
    Dyner, I., Bunn, D.: A simulation platform to analyze market liberalization and integrated energy conservation policies in Colombia. Syst. Model. Energy Policy, 259–271 (1997)Google Scholar
  21. 21.
    Dyner, I., Franco, J., Cardenas, M.: Making progress towards emissions mitigation: modeling low-carbon power generation policy. In: Qudrat-Ullah, H. (ed.) Energy Policy Modeling in 21st Century, pp. 235–1250. Springer, USA (2013)CrossRefGoogle Scholar
  22. 22.
    Ford, A., Bull, M.: Using system dynamics for conservation policy analysis in the Pacific Northwest. Syst. Dyn. Rev. 15(1), 1–16 (1989)CrossRefGoogle Scholar
  23. 23.
    Ford, A.: Using simulation for policy evaluation in the electric utility industry. Simulation 40(3), 85–92 (1983)CrossRefGoogle Scholar
  24. 24.
    Ford, A.: System dynamics and the electric power industry. Syst. Dyn. Rev. 13, 57–85 (1997)CrossRefGoogle Scholar
  25. 25.
    Guenter, D., Majumdar, B., Willms, D., Brown, G., Robison, G.: Community-based HIV education and prevention workers respond to a changing environment. J. Assoc. Nurses AIDS Care 16, 29–36 (2005)CrossRefGoogle Scholar
  26. 26.
    Gupta, A., Sharda, R.: Improving the science of healthcare delivery and informatics using modeling approaches. Decis. Support Syst. 55, 423–427 (2013)CrossRefGoogle Scholar
  27. 27.
    Henning, P.: Everyday cognition and situated learning. In: Jonassen, D. (ed.) Handbook of Research on Educational Communications and Technology, 2nd edn. Simon & Schuster, New York (1998)Google Scholar
  28. 28.
    Homer, J., Hirsch, G.: System dynamics modelling for public health: background and opportunities. Am. J. Public Health 96, 452–458 (2006)CrossRefGoogle Scholar
  29. 29.
    Kriz, W.C.: Creating effective learning environments and learning organizations through gaming simulation design. Simul. Gaming 34(4), 495–511 (2003)CrossRefGoogle Scholar
  30. 30.
    Lane, D.C.: On a resurgence of management simulations and games. J. Oper. Res. Soc. 46, 604–625 (1995)Google Scholar
  31. 31.
    Larsen, E., Arango, S.: System dynamics and the of electricity deregulation. In: Qudrat-Ullah, H. (ed.) Energy Policy Modeling in 21st Century, pp. 17–30. Springer, USA (2013)CrossRefGoogle Scholar
  32. 32.
    Lunce, M.: Simulations: bringing the benefits of situated learning to the traditional classroom. J. Appl. Educ. Technol. 3(1), 37–48 (2006)Google Scholar
  33. 33.
    Maier, F., Grobler, A.: What are we talking about?—A taxonomy of computer simulations to support learning. System Dynamics Review 16(2), 135–148 (2000)CrossRefGoogle Scholar
  34. 34.
    Moxnes, E.: Interfuel substitution in OECD–European electricity production. Syst. Dyn. Rev. 6(1), 44–65 (1990)CrossRefGoogle Scholar
  35. 35.
    Muller, O., Ruth, K., Schwaninger, M., Ulli-Ber, S.: The diffusion of eco-technologies: a model-based theory. In: Qudrat-Ullah, H. (ed.) Energy Policy Modeling in 21st Century, pp. 49–67. Springer, USA (2013)CrossRefGoogle Scholar
  36. 36.
    Mutingi, M.: Adoption of renewable energy technologies: a fuzzy system dynamics perspective. In: Qudrat-Ullah, H. (ed.) Energy Policy Modeling in 21st Century, pp. 175–196. Springer, USA (2013)CrossRefGoogle Scholar
  37. 37.
    Mutingi, M., Mbohwa, C.: Fuzzy system dynamics: a framework for modelling renewable energy policies. In: Qudrat-Ullah, H. (ed.) Energy Policy Modeling in 21st Century, pp. 31–47. Springer, USA (2013)CrossRefGoogle Scholar
  38. 38.
    Naill, R.: A system dynamics model for natural energy policy planning. Syst. Dyn. Rev. 8(1), 1–19 (1992)CrossRefGoogle Scholar
  39. 39.
    Ochoa, P.: Policy changes in the Swiss electricity market: a system dynamics analysis of likely market responses. Socio-Econ. Plann. Sci. 41(4), 336–349 (2007)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Olaya, Y., Dyner, I.: Modeling for policy assessment in the natural gas industry. J. Oper. Res. Soc. 56(11), 22–31 (2005)Google Scholar
  41. 41.
    Ponzo, R., Dyner, I., Arango, S., Larsen, E.R.: Regulation and development of the Argentinean gas market. Energy Policy 39(3), 1070–1079 (2011)CrossRefGoogle Scholar
  42. 42.
    Qudrat-Ullah, H., BaekSeo, S.: How to do structural validity of a system dynamics type simulation model: the case of an energy policy model. Energy Policy 38(5), 2216–2224 (2010)CrossRefGoogle Scholar
  43. 43.
    Qudrat-Ullah, H., Saleh, M.M., Bahaa, E.A.: Fish Bank ILE: an interactive learning laboratory to improve understanding of ‘the tragedy of commons’; a common behaviour of complex dynamic systems. In: Proceedings of 15th International System Dynamics Conference, Istanbul, Turkey (1997)Google Scholar
  44. 44.
    Qudrat-Ullah, H.: Debriefing can reduce misperceptions of feedback hypothesis: an empirical study. Simul. Gaming 38(3), 382–397 (2007)CrossRefGoogle Scholar
  45. 45.
    Qudrat-Ullah, H.: Understanding the dynamics of the adult female HIV and AIDS situation in Canada. Paper published in the proceedings of the 28th international system dynamics conference (proceedings on CD-ROM), 25–29 July 2010, Seoul, Korea (2010)Google Scholar
  46. 46.
    Qudrat-Ullah, H.: MDESRAP: a Model for understanding the dynamics of electricity supply, resources and pollution. Int. J. Global Energy Issues 23(1), 1–14 (2005)CrossRefGoogle Scholar
  47. 47.
    Qudrat-Ullah, H.: Perceptions of the effectiveness of system dynamics-based interactive learning environments: an empirical study. Comput. Educ. 55, 1277–1286 (2010)CrossRefGoogle Scholar
  48. 48.
    Qudrat-Ullah, H.: A simple model for a complex issue: Understanding the dynamics of adult HIV and AIDS situation in Canada. Int. J. Healthc. Deliv. Reform Initiatives 3(4), 60–74 (2013)CrossRefGoogle Scholar
  49. 49.
    Qudrat-Ullah, H.: Understanding the dynamics of electricity generation capacity in Canada: a system dynamics approach. Energy 59, 285–294 (2013)CrossRefGoogle Scholar
  50. 50.
    Qudrat-Ullah, H., Davidsen, P.: Understanding the dynamics of electricity supply, resources and pollution: Pakistan’s case. Energy 26(6), 595–606 (2001)CrossRefGoogle Scholar
  51. 51.
    Ritchie-Dunham, J., Galván, J.: Evaluating epidemic intervention policies with systems thinking: a case study of dengue fever in Mexico. Syst. Dyn. Rev. 15, 119–138 (1999)CrossRefGoogle Scholar
  52. 52.
    Saeed, K.: Managing the energy basket in the face of limits. In: Qudrat-Ullah, H. (ed.) Energy Policy Modeling in 21st Century, pp. 69–86. Springer, USA (2013)CrossRefGoogle Scholar
  53. 53.
    Sterman, J.D.: Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill, New York (2000)Google Scholar
  54. 54.
    Suryani, E., Chou, S., Hartono, R., Chen, C.: Demand scenario analysis and planned capacity expansion: a system dynamics framework. Simul. Model. Pract. Theory 18, 732–751 (2010)CrossRefGoogle Scholar
  55. 55.
    Tebbens, D., Thompson, K.: Priority shifting and the dynamics of managing eradicable infectious diseases. Manage. Sci. 55, 650–663 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Administrative StudiesYork UniversityTorontoCanada

Personalised recommendations