Skip to main content

Fuzzy System Dynamics: A Framework for Modeling Renewable Energy Policies

  • Chapter
  • First Online:
Energy Policy Modeling in the 21st Century

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Renewable energy policy formulation and evaluation is an important subject matter at island, country, regional, and global levels. The general objective is to achieve a sustainable low-carbon energy economy. However, developing robust long-term renewable energy policies is nontrivial due to complex dynamics prevalent in energy systems. To meet future energy demand while keeping CO2 emission at a sustainable level, effective renewable energy policies have to be put into place. This chapter presents a framework for evaluating renewable energy policies based on a fuzzy system dynamics (FSD) paradigm. First, we describe the renewable energy policy problem, with a case study example. Second, we present a framework for FSD modeling. Third, we propose a high-level causal loop analysis to capture the complex dynamic interactions among various energy demand and supply factors, from an FSD perspective. Fourth, and finally, we propose an FSD model for renewable energy policy modeling and evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anand, S., Vrat, P., Dahiya, R.P.: Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry. J Environ. Manage. 79, 383–398 (2005)

    Article  Google Scholar 

  • Barlas, Y.: Formal aspects of model validity and validation in system dynamics. Syst. Dynam. Rev. 12(3), 183–210 (1996)

    Article  Google Scholar 

  • BBC.: South Africa to cut carbon emissions by 34 %. http://news.bbc.co.uk/2/hi/africa/8398775.stm (2009). Accessed 02 June 2012

  • Chandrasekara, B., Tara, C.K.: An opinion survey based assessment of renewable energy technology development in India. Renew. Sustain. Energ. Rev. 11, 688–701 (2007)

    Article  Google Scholar 

  • Chang, Y., Ries, R.J., Wang, Y.: The embodied energy and environmental emissions of construction projects in China: an economic input—output LCA model. J. Energ. Policy 38(11), 6597–6603 (2010)

    Article  Google Scholar 

  • Chen, F., Duic, N., Alves, L.M., Carvalho, M.G.: Renewislands—renewable energy policies for islands. Renew. Sust. Energ. Rev. 11(8), 1888–1902 (2007)

    Article  Google Scholar 

  • Coyle, RG.: System Dynamics Modeling—A Practical Approach. Chapman and Hall, New York (1996)

    Book  Google Scholar 

  • DEES.: Draft energy efficiency strategy of the Republic of South Africa. Department of Minerals and Energy (April 2004)

    Google Scholar 

  • Demiroren, A., Yilmaz, U.: Analysis of change in electric energy cost with using renewable energy sources in Gokceada, Turkey: an island example. Ren. Sust. Energ. Rev. 14, 323–333 (2010)

    Article  Google Scholar 

  • Dyner, I., Smith, R., Pena, G.: System dynamics modeling for energy efficiency analysis and management. J. Oper. Res. 46(10), 1163–1173 (1995)

    Google Scholar 

  • Ernest, F.B., Matthew, A.B.: Feasibility of solar technology (photovoltaic) adoption—a case study on Tennessee’s poultry industry. Ren. Energ. 34, 748–754 (2009)

    Article  Google Scholar 

  • Ford, J.W.: System dynamics and the electric power industry. Syst. Dynam. Rev. 13(1), 57–85 (1997)

    Article  Google Scholar 

  • Forester, J.: Industrial Dynamics. Pegasus Communications, Waltham (1961)

    Google Scholar 

  • Forrester, J. W., Senge, P. M.: Tests for building confidence in system dynamics models. Time Stud. Manage. Sci. 14, 209–228 (1980).

    Google Scholar 

  • GPO.: Annual energy outlook, with projects to 2030. USA Government Printing Office (2009)

    Google Scholar 

  • Han, J., Hayashi, Y.: A system dynamics model of CO2 mitigation in China’s inter-city passenger transport. Transport. Res. D. Transport Environ. 13(5), 298–305 (2008)

    Article  Google Scholar 

  • Huang, L.M.: Financing rural renewable energy: a comparison between China and India. Renew. Sust. Energ. Rev. 13(5), 1096–1103 (2009)

    Article  Google Scholar 

  • IPCC—Intergovernmental Panel on Climate Change.: IPCC third assessment report, IPCC. http://www.ipcc.ch/ipccreports/tar/index.htm (2001). Accessed 22 Nov 2010

  • IPCC—Intergovernmental Panel on Climate Change.: IPCC fourth assessment report, IPCC. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf (2007). Accessed 02 June 2012

  • Jan, T.S., Hsiao, C.T.: A four-role model of the automotive industry development in developing countries: a case in Taiwan. J. Oper. Res. Soc. 55(11), 1145–1155 (2004)

    Article  MATH  Google Scholar 

  • Jin, W., Xu, L., Yang, Z.: Modeling a policy making framework for urban sustainability: incorporating system dynamics into the ecological footprint. Ecolog. Econ. 68(12), 2938–2949 (2009)

    Article  Google Scholar 

  • John, B., Bo, S., William, W.: The economics of sustainable energy for rural development: a study of renewable energy in rural China. Energ. Policy 26, 45–54 (1998)

    Article  Google Scholar 

  • Kosko, B.: Fuzzy systems as universal fuzzy approximation. In: Proceedings of the First IEEE International Conference on Fuzzy Systems, pp. 1153–1162 (1992a)

    Google Scholar 

  • Kosko, B.: Neural Networks and Fuzzy Systems. Prentice-Hall, Englewood Cliffs (1992b)

    MATH  Google Scholar 

  • Kosko, B.: Fuzzy Thinking. Harpner Collins, London (1994)

    Google Scholar 

  • Kosko, B.: Combining fuzzy systems. IEEE FUZZ-95, Yokohama, Japan, March, 1995

    Google Scholar 

  • Krushna, M., Leif, G.: An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden. Energ. Policy 36, 577–579 (2008)

    Article  Google Scholar 

  • Labibi, A.W., Williams, G.B., O’Conor, R.F.: An intelligent maintenance model system: an application of the analytic hierarchy process and a fuzzy logic rule-based controller. J. Oper. Res. Soc. 49, 745–757 (1998)

    Google Scholar 

  • Levary, R.: Systems dynamics with fuzzy-logic. Int. J. Syst. Sci. 21(8), 1701–1707 (1990)

    Article  Google Scholar 

  • Li, J.F., Zhu, L., Hu, R.Q.: Policy analysis of the barriers to renewable energy development in the people’s republic of China. Energ. Sustain. Dev. 6, 11–20 (2009)

    Google Scholar 

  • Liu, H.Y., Wu, S.D.: An assessment on the planning and construction of an island renewable energy system: a case study of Kinmen Island. Renew. Energ. 35(12), 2723–2731 (2010)

    Article  Google Scholar 

  • Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

    Google Scholar 

  • MED-SA.: White paper on renewable energy. Department of minerals and energy, Republic of South Africa (2003)

    Google Scholar 

  • Morecroft, J.D.W.: Strategic modeling and business dynamics: a feedback systems approach. Wiley, Chichester (2007)

    Google Scholar 

  • Mutingi, M., Matope, S.: System dynamics of renewable energy technology adoption. IEEE International Conference on Industrial Technology, South Africa (2013)

    Google Scholar 

  • Mutingi, M., Mbohwa, C.: Fuzzy system dynamics simulation for manufacturing supply chain systems with uncertain demand. In: CIE42 Proceedings of the International Conference on Computers and Industrial Engineering, South Africa, pp. 1–12 (2012)

    Google Scholar 

  • Naill, R.: A system dynamics model for national energy policy planning. Syst. Dynam. Rev. 8(1), 1–19 (1992)

    Article  Google Scholar 

  • NER.: National Electricity Regulator. Electricity Supply Statistics for South Africa.NER, Pretoria (2004)

    Google Scholar 

  • Oikonomou, E.K., Kilias, V., Goumas, A., Rigopoulos, A., Karakatsani, E., Damasiotis, M.: Renewable energy sources projects and their barriers on a regional scale: the case of wind parks in the Dodecanese islands, Greece. Energ. Policy 37(11), 4874–4883 (2009)

    Article  Google Scholar 

  • Peter, W.: Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 85, 849–860 (2010)

    Article  Google Scholar 

  • Peters, G.P.: From production-based to consumption-based national emission inventories. Ecolog. Econ. 65(1), 13–23 (2008)

    Article  Google Scholar 

  • Qudrat-Ullah, H.: MDESRAP: a model for understanding the dynamics of electricity supply, resources, and pollution. Int. J. Global Energ. 23(1), 1–4 (2005)

    Article  Google Scholar 

  • Qudrat-Ullah, H., Davidsen, P.I.: Understanding the dynamics of electricity supply, resources and pollution: Pakistan’s case. Energy 26, 595–606 (2001)

    Article  Google Scholar 

  • Qudrat-Ullah, H., Seong, B.S.: How to do structural validity of a system dynamics type simulation model: the case of an energy policy model. Energ. Policy 38, 2216–2224 (2010)

    Article  Google Scholar 

  • Raja, P., Laurence, D., Vasanthi, M.P.: Adoption of photovoltaic power supply systems: a study of key determinants in India. Ren. Energ. 31, 2272–2283 (2006)

    Article  Google Scholar 

  • Roger, F., Naill, R., Belanger, S., Klinger, A., Petersen, E.: An analysis of the cost effectiveness of U.S. energy policies to mitigate global warming. Sys. Dynam. Rev. 8(2), 111–128 (1990)

    Google Scholar 

  • Saysel, A. K., Barlas, Y.: Model simplification and validation testing. Sys. Dynam. Rev. 22(3), 241–262 (2006)

    Article  Google Scholar 

  • Sterman, J. D.: Business Dynamics: Systems Thinking and Modeling for a Complex World. Irwin/McGraw-Hill, Boston (2004)

    Google Scholar 

  • Sugeno, M.: Industrial applications of fuzzy control. Elsevier Science Pub. Co.(1985)

    Google Scholar 

  • Tessem, B., Davidsen, P.I.: Fuzzy system dynamics: an approach to vague and qualitative variables in simulation. Sys. Dynam. Rev. 10(1), 49–62 (1994)

    Article  Google Scholar 

  • Trappey, C.V., Trappey, A.J.C., Lin, G.Y.P., Chang, Y-S.: System dynamics evaluation of renewable energy policies. In: Frey, D.D., Fukuda, S., Rock, G. (eds.) Improving Complex Systems Today. Advanced Concurrent Engineering, pp. 133–140. Springer, New York (2011)

    Chapter  Google Scholar 

  • Trappey, A., Trappey, C., Hsiao, C.T., Ou, J., Chang, C.T.: System dynamics modeling of product carbon footprint life cycles for collaborative green supply chains. Int. J. Comp. Integ. M. 25(10), 934–945 (2012a)

    Article  Google Scholar 

  • Trappey, A.J.C., Trappey, C.V., Lina, G.Y.P., Chang, Y.S.: The analysis of renewable energy policies for the Taiwan Penghu island administrative region. Renew. Sustain. Energ. Rev. 16, 958–965 (2012b)

    Article  Google Scholar 

  • Trappey, A.J.C., Trappey, C., Hsiao, C.T., Ou, J.J.R., Li, S.J., Chen, K.W.P.: An evaluation model for low carbon island policy: the case of Taiwan’s green transportation policy. Energ. Policy 45, 510–515 (2012c)

    Article  Google Scholar 

  • Uemura, Y., Kai, T., Natori, R., Takahashi, T., Hatate, Y., Yoshida, M.: Potential of renewable energy sources and its applications in Yakashima Island. Renew. Energ. 29, 581–591 (2003)

    Article  Google Scholar 

  • United Nations.: Kyoto protocol to the united nations framework convention on climate change. UNFCCC (1998)

    Google Scholar 

  • Vicki, G., Tomas, M.K.: Breaking the cycle producer and consumer perspectives on the non-adoption of passive solar housing in the US. Energ. Policy 36, 551–566 (2008)

    Google Scholar 

  • Vizayakumar, K., Mohapatra, P.K.J.: Modeling and simulation of environmental impacts of coalfield: system dynamics approach. J. Environ. Syst. 22(1), 59–73 (1993)

    Article  Google Scholar 

  • Winkler. H.: Energy policies for sustainable development in South Africa: options for the future. Energy Research Centre, University of Cape Town (2006)

    Google Scholar 

  • Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Set. Syst. 1, 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Mutingi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mutingi, M., Mbohwa, C. (2013). Fuzzy System Dynamics: A Framework for Modeling Renewable Energy Policies. In: Qudrat-Ullah, H. (eds) Energy Policy Modeling in the 21st Century. Understanding Complex Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8606-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8606-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8605-3

  • Online ISBN: 978-1-4614-8606-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics