Skip to main content

Utilization of Sawmill By-Product for Making Cellulose and Its Valuable Derivatives

  • Chapter
  • First Online:
Biomass and Bioenergy

Abstract

Nowadays, biomass is a valuable raw material not only for energy but also achieving the goal of sustainable development by converting into various life saving, decorative, structural and nonfood consumer products such as pharmaceuticals, paints, adhesives, textile products, polymer composites, cosmetics, papers, and various commodity specially cellulose derivatives. The main constituent of most biomass is cellulose. Sawdust is a good representative of abundant residual forest biomass and consists of 40–50 % of cellulose, 25–35 % of hemicelluloses, and 20–30 % lignin, approximately. It is frequently used for direct combustion in our subcontinent resulting in energy loss and environmental pollution. As it contains higher percentage of cellulose, it can be value-added by producing plenty of precious cellulose derivatives, for instance, carboxymethylcellulose (CMC) which is extensively used as emulsion stabilization, binder, thickener of paints, film-former in textiles, etc. A number of researches have been published on the preparation of cellulose derivatives from wood and sawdust. This chapter will accumulate some basic synthesis reactions and scope of applications of valuable cellulose derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelstein PZ, Reilly JM, Nishimura DW, Erbland CJ (1992) Stability of cellulose ester base photographic film: part 1. Laboratory testing procedures. SMPTE J 101:336–446

    Article  Google Scholar 

  • Ali S, Selen G, Burc, Uskan I, Mustafa G (2009) Comparative studies of intermediates produced from hydrothermal treatments of sawdust and cellulose. J Supercrit Fluids 50:121–127

    Article  Google Scholar 

  • Alvarez P, Blanco C, Santamarıa R, Granda M (2005) Lignocellulose/pitch based composites. Compos Appl Sci Manuf 36:649–657

    Article  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  • Arion H (2001) Carboxymethyl cellulose hydrogel-filled breast implants. Ann Chir Plast Esthet 46:55–59

    Article  CAS  PubMed  Google Scholar 

  • Aubier D (1996) Degradation caused by cellulose diacetate: analysis and proposals for conservation treatment. Restaurator 17(2):130–143

    Article  CAS  Google Scholar 

  • Aulin C, Gallstedt M, Lindstrom T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574

    Article  CAS  Google Scholar 

  • Aulton ME, Cole G, Hogan J (1995) Pharmaceutical coating technology. Taylor & Francis, London

    Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) A review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  PubMed  Google Scholar 

  • Balser K, Hoppe L, Eicher T, Wandel M, Astheimer HJ, Steinmeier H, Allen JM (1986) Cellulose esters. In: Gerhartz W, Stephen YY, Thomas CF, Pfefferkorn R, James F (eds) Ullmann’s encyclopedia of industrial chemistry. Weinheim, Wiley-VCH

    Google Scholar 

  • Barba C, Montane D, Rinaudo M, Farriol X (2002) Synthesis and characterization of carboxymethylcelluloses (CMC) from non-wood fibers I.Accessibility of cellulose fibers and CMC synthesis. Cellulose 9:319–326

    Article  CAS  Google Scholar 

  • Baumann H, Richter A, Klemm D, Faust V (2000) Concepts for preparation of novel regioselective modified cellulose derivatives sulphated, aminated, carboxylated and acetylated for homocompatible ultrathin coating on biomaterials. Macromol Chem Phys 201:1950–1962

    Article  Google Scholar 

  • Berg VDO, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8:1353–1357

    Article  PubMed  Google Scholar 

  • Berman HM, Kim SH (1968) The crystal structure of methyl-α-D-glucopyranoside. Acta Crystallogr B24(7):897–904

    Article  Google Scholar 

  • Blackwell J, Kolpak F, Gardner K (1977) Cellulose Chemistry and Technology, Ed.: Arthur J, ACS-Symp Series No. 48, Am Chem Soc, Washington, 42

    Google Scholar 

  • Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59(8):1329

    Article  CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  • Brandt L (1986) Cellulose ethers. In: Gerhartz W, Stephen YY, Thomas CF, Pfefferkorn R, James F (eds) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH and Co, Weinheim, Germany, pp 461–487

    Google Scholar 

  • Brown G, Ley H (1965) α-D-glucose: precise determination of crystal and molecular structure by neutron-diffraction analysis. Science 147:1038–1039

    Article  CAS  PubMed  Google Scholar 

  • Candanedo BS, Roman M, Gray D (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  Google Scholar 

  • Casey J (1981) Pulp and paper: chemistry and chemical technology. John Wiley, New York, 3

    Google Scholar 

  • Chu SSC, Jeffrey GA (1968) The refinement of the crystal structure of β-d-glucose and cellobiose. Acta Crystallogr B24:830–838

    Article  Google Scholar 

  • Coffey DG, Bell DA (1995) Cellulose and cellulose derivatives. In: Stephen AM (ed) Food polysaccharides and their applications. Marcel Dekker, New York, pp 123–153

    Google Scholar 

  • Croon I, Manley RSJ (1963) O-ethylcellulose. In: Whistler RL (ed) Methods in carbohydrate chemistry. Academic, New York and London, pp 271–288

    Google Scholar 

  • Dautzenberg H, Schuldt U, Lerche D et al (1999) Size exclusion properties of polyelectrolyte complex microcapsules prepared from sodium cellulose sulphate and poly[diallyldimethylammonium chloride]. J Membr Sci 162:165–171

    Article  CAS  Google Scholar 

  • Dolz M, Jiménez J, Hernández MJ, Delegido J, Casanovas A (2007) Flow and thixotropy of non-contaminating oil drilling fluids formulated with bentonite and sodium carboxymethyl cellulose. J Petrol Sci Eng 57:294–302

    Article  CAS  Google Scholar 

  • Donges R (1990) Non-ionic cellulose ethers. British Polym J 23:315–326

    Article  Google Scholar 

  • Ellefsen O, Tonnesen AB (1971) Cellulose and cellulose derivatives, vol V. Wiley, New York, pp 151–180

    Google Scholar 

  • Fijan RM, Basile SS, Turk ZM, Zigon AM, Lapasin R (2009) A study of rheological and molecular weight properties of recycled polysaccharides used as thickeners in textile printing. Carbohydr Polym 76:8–16

    Article  CAS  Google Scholar 

  • Friedman M, Golomb G (1982) New sustained release dosage form of chlorhexidine for dental use. J Periodontal Res 17:323–328

    Article  CAS  PubMed  Google Scholar 

  • Greenway TM (1994) Water-soluble cellulose derivatives and their commercial use. In: Gilbert R (ed) Cellulosic polymers, blends and composites. Hanser, Viena, pp 173–188

    Google Scholar 

  • Greminger GK (1979) Cellulose derivatives, ethers. In: Mark HF, Othmer DF, Overberg CG. Seaborg GT, Kirk-Othmer (eds) Encyclopedia of chemical technology. Vol 5. A Wiley Interscience Publication, p 143-161

    Google Scholar 

  • Greminger GK. Krumel KL (1981) In: Crawford HB, Williams J (eds). Handbook of water-soluble and resins in water-soluble polymers. Developments since 1978, Kingsport Press, Park Ridge, 1

    Google Scholar 

  • Groth T, Wagenknecht W (2001) Anticoagulant potential of regioselective derivatized cellulose. Biomaterials 22:2719–2729

    Article  CAS  PubMed  Google Scholar 

  • Ham J, Williams D (1970) The crystal and molecular structure of methyl β-cellobioside-methanol. Acta Crystallogr B26:1373–1383

    Article  Google Scholar 

  • Haworth WN (1928) The structure of carbohydrates. Helv Chim Acta 11:534

    Article  CAS  Google Scholar 

  • Haworth WN (1932) Die Konstitution einiger Kohlenhydrate. Ber Dtsch Chem Ges (A) 65:43

    Article  Google Scholar 

  • Heng PWS, Chan LW, Easterbrook MG, Li X (2001) Investigation of the influence of mean HMPC particle size and number of polymer particles on the release of aspirin from swellable hydrophilic matrix tablets. J Control Rel 76:39–49

    Article  CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindstro¨m T (2007) An environmentally friendly method for enzymeassisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci 37:797–813

    CAS  Google Scholar 

  • Hon DNS (1992) Chemical modification of lignocellulosic materials: old chemistry, new approaches. Polym News 17(4):102

    CAS  Google Scholar 

  • Hon DNS, Shiraishi N (1991) Wood and cellulose chemistry. Marcel Dekker, New York

    Google Scholar 

  • Horvath DG (1987) The Acetate Negative Survey Final Report, University of Louisville Ekstrom Library Photographic Archives, p 4

    Google Scholar 

  • Jardeby K, Germga U, Kreutz B, Heinze T, Heinze U, Lennholm H (2005) Effect of pulp composition on the characteristics of residuals in CMC made from such pulps. Cellulose 12:385–393

    Article  CAS  Google Scholar 

  • Kirk RE, Othmer DF (1997) Cellulose encyclopedia of chemical technology, vol 4. Wiley, New York, pp 593–683

    Google Scholar 

  • Koch H, Peterlin A (1970) Synthesis and 13C N.M.R. spectrum of D-glucose-3-d. bond-polarization differences between the anomers of D-glucose. Carbohydr Res 15:403–410

    Article  CAS  Google Scholar 

  • Krässig H (1996) Cellulose, polymer monographs, vol 11. Gordon and Breach Science, Amsterdam, pp 6–42

    Google Scholar 

  • Liu H, Fu SY, Zhu JY, Li H, Zhan HY (2009) Vizualization of enzymatic hydrolysis of cellulose using AFM phase imaging. Enzyme Microb Technol 45:274–281

    Article  CAS  Google Scholar 

  • Machessault R, Liang C (1960) Infrared spectra of crystalline polysaccharides III mercerized cellulose. J Polym Sci 43:71–84

    Article  Google Scholar 

  • Maile RJ,U.S. Patent, 4, 917, 823 (1990)

    Google Scholar 

  • Majewicz TG, Padlas TT (1993) In: J.I Kroschwitz, & M. Howe-Grant (Vol. Eds.), Kirk–Othmer encyclopedia of chemical technology: Vol. 5 (4th ed.) New York: Wiley, p 541–563

    Google Scholar 

  • Mitchell A (1970) Carbohydr Res 15:453

    Article  Google Scholar 

  • Mohanty AK, Simmons CR, Wiener MC (2003) Inhibition of tobacco etch virus protease activity by detergents. Protein Expr Purif 27:109–114

    Article  CAS  PubMed  Google Scholar 

  • Mondal MIH, Khan GMA (2008) Effect of acrylic monomers grafting onto jute constituents with potassium persulfate initiator catalysed by Fe(II). Cellulose Chem Technol 42(1–3):9–16

    CAS  Google Scholar 

  • Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25:8280–8286

    Article  CAS  PubMed  Google Scholar 

  • Mura P, Faucci MT, Manderioli A, Bramanti G, Parrini P (1999) Thermal behavior and dissolution properties of naproxen from binary and ternary solid dispersion. Drug Develop Indl Pharm 25:257–264

    Article  CAS  Google Scholar 

  • Nabar GM, Padmanabhan CV (1950) Studies in oxycellulose. Proc Indian Acad Sci A 31:371–380

    Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A Mater Sci Proc 78:547–552

    Article  CAS  Google Scholar 

  • Nomori H, Horio H (1997) Gelatin-resorcinol-formaldehyde-glutaraldehyde glue-spread stapler prevents air leakage from the lung. Ann Thorac Surg 63:352

    Article  CAS  PubMed  Google Scholar 

  • Oto A, Remer EM, O’Malley CM, Tkach JA, Gill IS (1999) MR characteristics of oxidized cellulose (Surgicel). AJR Am J Roentgenol 172(6):1481–1484

    Article  CAS  PubMed  Google Scholar 

  • Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogeneization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  CAS  PubMed  Google Scholar 

  • Payen A (1842) Troisième mémoire sur le development végétaux’Extrait des mémoires de l’Academie Royale des Sciences: Tomes III des Savants Éntranges. Imprimerie Royale, Paris

    Google Scholar 

  • Pennell PE, Blackmore JM, Allen MD, U.S.Patent, 5,156, 839 (1992)

    Google Scholar 

  • Philipp B, Nehls I, Wagenknecht W (1987) 13C-NMR spectroscopy study of the homogeneous sulphation of cellulose and xylan in the N2O4-DMF system. Carbohydr Res 164:107–116

    Article  CAS  Google Scholar 

  • Rånby BG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3: 649–650

    Article  Google Scholar 

  • Rånby BG, Ribi E (1950) U¨ ber den feinbau des zellulose. Experientia 6:12–14

    Article  PubMed  Google Scholar 

  • Rao V, Sundararajan P, Ramakrishnan C, Ramachandran G (1957) Conformation of biopolymers. Academic, London, 721

    Google Scholar 

  • Rathbone MJ, Hadgraft J, Roberts MS (2003) Modified-release drug delivery technology. Marcel Dekker, New York, Basel

    Google Scholar 

  • Rebenfeld L (1954) Study of the Cellulose Methylation Reaction. Ph.D. thesis, Princeton university

    Google Scholar 

  • Reilly M (1993) IPI storage guide for acetate film. Image Permanence Institute, New York

    Google Scholar 

  • Saake B, Puls J, Wagenkncht W (2002) Endoglucanase fragmentation of cellulose sulfates derived from different synthesis concepts. Carbohydr Polym 48:7–14

    Article  CAS  Google Scholar 

  • Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crop Prod 23:1

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  PubMed  Google Scholar 

  • Serad GH (1993). In: Kroschwitz JI, Howe-Grant M (Vol. Eds.), Kirk–Othmer encyclopedia of chemical technology: Vol 10 (4th ed.) New York: Wiley, p 598–624

    Google Scholar 

  • Simon C, Wim T (2010) The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin. Coordin Chem Rev 254(15–16):1854–1870

    Google Scholar 

  • Staudinger H (1960) Die hochmolekularen organichen verbindungen: kautschuk und cellulose, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Suida W (1905) Monatsh, 26, 413

    Google Scholar 

  • Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526

    Article  CAS  Google Scholar 

  • Timell TE, Purves CB (1951) A study of the initial stages of the methylation of cellulose. Svensk Papperstidning árg 54:303–332

    CAS  Google Scholar 

  • Togrul H, Arslan N (2003) Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behaviour of carboxymethyl cellulose. Carbohydr Polym 54:73–82

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Sci 37:815–827

    CAS  Google Scholar 

  • Varma AJ, Chavan VB (1995) A study of crystallinity changes in oxidised celluloses. Polym Degrad Stab 49:245–250

    Article  CAS  Google Scholar 

  • Varshney V, Gupta P, Naithani S (2006) Carboxymethylation of cellulose isolated from Lantana camara with respect to degree of substitution and rheological behavior. Carbohydr Polym 63:40–45

    Article  CAS  Google Scholar 

  • Wang ZM, Li L, Zheng BS, Normakhamatov N, Guo SY (2007) Preparation and anticoagulation activity of sodium cellulose sulphate. Int J Bio Macromol 41:376–382

    Article  CAS  Google Scholar 

  • Xiaojia H, Shaozu W, Dongkang F, Jinren N (2009) Preparation of sodium carboxymethyl cellulose from paper sludge. J Chem Technol Biotechnol 84(3):427–434

    Article  Google Scholar 

  • Ye D, Montane D, Farriol X (2005) Preparation and characterization of methyl celluloses from Miscanthus sinensis. Carbohydr Polym 62:258–266

    Article  CAS  Google Scholar 

  • Zhang K, Brendler E, Fischer S (2010) FT Raman investigation of sodium cellulosesulfate. Cellulose 17:427–435

    Article  Google Scholar 

  • Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mat 6:754–761

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Arifuzzaman Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Choudhury, M.J., Khan, G.M.A. (2014). Utilization of Sawmill By-Product for Making Cellulose and Its Valuable Derivatives. In: Hakeem, K., Jawaid, M., Rashid, U. (eds) Biomass and Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-07578-5_9

Download citation

Publish with us

Policies and ethics