Skip to main content

Simulation of Arbitrary Mixed-Mode Crack Growth Using an Energy-Based Approach

  • Conference paper
  • First Online:
Fracture, Fatigue, Failure, and Damage Evolution, Volume 5

Abstract

A finite-element-based simulation technique is being developed to predict 3-D, arbitrary, non-planar evolution of mixed-mode crack growth. The approach combines a geometrically explicit crack front re-meshing scheme, and an energy-based growth formulation to predict extension magnitudes along the crack front. The technique also leverages a new 3-D mixed-mode energy release rate decomposition using the virtual crack extension (VCE) method. The energy-based crack growth formulation, previously implemented for planar crack growth, is extended to non-planar growth situations by employing a basis-function approach to describe crack front extensions. Rather than determining point-by-point extensions, calculating a governing function alleviates numerical influences on the crack growth predictions. The simulation technique seeks to mitigate computationally biased crack growth, as found in prescribed and mesh dependent methods, for example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Methods Eng 63:760–788

    Article  MATH  Google Scholar 

  2. Huang R, Sukumar N, Prévost J-H (2003) Modeling quasi-static crack growth with the extended finite element method. Part II: Numerical applications. Int J Solids Struct 40:7539–7552

    Article  MATH  Google Scholar 

  3. Sukumar N, Chopp DL (2008) Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method. Int J Numer Methods Eng 76:727–748

    Article  MATH  MathSciNet  Google Scholar 

  4. Roy YA, Dodds RH (2001) Simulation of ductile crack growth in thin aluminum panels using 3-D surface cohesive elements. Int J Fract 110:21–45

    Article  Google Scholar 

  5. Khoei AR, Moslemi H, Sharifi M (2012) Three-dimensional cohesive fracture modeling of non-planar crack growth using adaptive FE technique. Int J Solids Struct 49:2334–2348

    Article  Google Scholar 

  6. Carter BJ, Wawrzynek PA, Ingraffea AR (2000) Automated 3-D crack growth simulation. Int J Numer Methods Eng 47:229–253

    Article  MATH  Google Scholar 

  7. Moslemi H, Khoei AR (2009) 3D adaptive finite element modeling of non-planar curved crack growth using the weighted superconvergent patch recovery method. Eng Fract Mech 76:1703–1728

    Article  Google Scholar 

  8. Gürses E, Miehe C (2009) A computational framework of three-dimensional configurational-force-driven brittle crack propagation. Comput Methods Appl Mech Eng 198:1413–1428

    Article  MATH  Google Scholar 

  9. Maligno AR, Rajaratnam S, Leen SB, Williams EJ (2010) A three-dimensional (3D) numerical study of fatigue crack growth using remeshing techniques. Eng Fract Mech 77:94–111

    Article  Google Scholar 

  10. Davis BR, Wawrzynek PA, Ingraffea AR (2014) 3-D simulation of arbitrary crack growth using an energy-based formulation—Part I: Planar growth. Eng Fract Mech 115:204–220

    Article  Google Scholar 

  11. FRANC3D 6.0.5. Fracture Analysis Consultants, Inc., Ithaca, NY, USA (2013) www.francanalysis.com

  12. Dixon J, Pook L (1969) Stress intensity factors calculated generally by the finite element technique. Nature 224:166–167

    Article  Google Scholar 

  13. Watwood VB Jr (1969) The finite element method for prediction of crack behavior. Nucl Eng Des 11:323–332

    Article  Google Scholar 

  14. Hellen TK (1975) On the method of virtual crack extensions. Int J Numer Methods Eng 9:187–207

    Article  MATH  Google Scholar 

  15. Parks DM (1974) A stiffness derivative finite element technique for determination of crack tip stress intensity factors. Int J Fract 10:487–502

    Article  Google Scholar 

  16. Haber RB, Koh HM (1985) Explicit expressions for energy release rates using virtual crack extensions. Int J Numer Methods Eng 21:301–315

    Article  MATH  Google Scholar 

  17. Lin SC, Abel JF (1988) Variational approach for a new direct-integration form of the virtual crack extension method. Int J Fract 38:217–235

    Google Scholar 

  18. Hwang CG, Wawrzynek PA, Ingraffea AR (2001) On the virtual crack extension method for calculating the derivatives of energy release rates for a 3D planar crack of arbitrary shape under mode-I loading. Eng Fract Mech 68:925–947

    Article  Google Scholar 

  19. Ishikawa H (1980) A finite element analysis of stress intensity factors for combined tensile and shear loading by only a virtual crack extension. Int J Fract 16:243–246

    Article  MathSciNet  Google Scholar 

  20. Nikishkov GP, Atluri SN (1987) Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack, by the “equivalent domain integral” method. Int J Numer Methods Eng 24:1801–1821

    Article  MATH  Google Scholar 

  21. Shivakumar KN, Raju IS (1992) An equivalent domain integral method for three-dimensional mixed-mode fracture problems. Engineering 42:935–959

    Google Scholar 

  22. Huber O, Nickel J, Kuhn G (1993) On the decomposition of the J-integral for 3D crack problems. Int J Fract 64:339–348

    Article  Google Scholar 

  23. Kassir MK, Sih GC (1974) Three-dimensional crack problems, Mech. Fract. II. Noordhoff International Publishing, Leyden

    Google Scholar 

  24. Levan A, Royer J (1993) Part-circular surface cracks in round bars under tension, bending and twisting. Int J Fract 61:71–99

    Article  Google Scholar 

  25. Ismail AE, Ariffin AK, Abdullah S, Ghazali MJ (2012) Stress intensity factors under combined tension and torsion loadings. Indian J Eng Mater Sci 19:5–16

    Google Scholar 

  26. Hussain MA, Pu SL, Underwood J (1974) Strain energy release rate for a crack under combined mode I and mode II. In: Fracture analysis. American Society for Testing and Materials, ASTM STP 560. pp 2–28

    Google Scholar 

Download references

Acknowledgements

This work was funded by the NASA University Institutes Project under Grant NCC3-989, and the Cornell University Ross-Tetelman Fellowship in Civil and Environmental Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Davis, B.R., Wawrzynek, P.A., Ingraffea, A.R. (2015). Simulation of Arbitrary Mixed-Mode Crack Growth Using an Energy-Based Approach. In: Carroll, J., Daly, S. (eds) Fracture, Fatigue, Failure, and Damage Evolution, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-06977-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06977-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06976-0

  • Online ISBN: 978-3-319-06977-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics