Skip to main content

Multiscale Partition of Unity

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 100)

Abstract

We introduce a new Partition of Unity Method for the numerical homogenization of elliptic partial differential equations with arbitrarily rough coefficients. We do not restrict to a particular ansatz space or the existence of a finite element mesh. The method modifies a given partition of unity such that optimal convergence is achieved independent of oscillation or discontinuities of the diffusion coefficient. The modification is based on an orthogonal decomposition of the solution space while preserving the partition of unity property. This precomputation involves the solution of independent problems on local subdomains of selectable size. We deduce quantitative error estimates for the method that account for the chosen amount of localization. Numerical experiments illustrate the high approximation properties even for ‘cheap’ parameter choices.

Keywords

  • Partition of unity method
  • Multiscale method
  • LOD
  • Upscaling
  • Homogenization

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

References

  1. A. Abdulle, E. Weinan, B. Engquist, E. Vanden-Eijnden, The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012). MR 2916381

    Google Scholar 

  2. H.W. Alt, Lineare Funktionalanalysis (Springer, Berlin/Heidelberg, 2006)

    MATH  Google Scholar 

  3. I. Babuška, U. Banerjee, J.E. Osborn, Meshless and generalized finite element methods: a survey of some major results, in Meshfree Methods for Partial Differential Equations, Bonn, 2001. Lecture Notes in Computational Science and Engineering, vol. 26 (Springer, Berlin, 2003), pp. 1–20. MR 2003426 (2004h:65116)

    Google Scholar 

  4. I. Babuška, G. Caloz, J.E. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31(4), 945–981 (1994). MR 1286212 (95g:65146)

    Google Scholar 

  5. I. Babuška, R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9(1), 373–406 (2011). MR 2801210 (2012e:65259)

    Google Scholar 

  6. I. Babuška, J.M. Melenk, The partition of unity method. Int. J. Numer. Methods Eng. 40, 727–758 (1996)

    CrossRef  Google Scholar 

  7. T. Belytschko, N. Moës, S. Usui, C. Parimi, Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50(4), 993–1013 (2001)

    CrossRef  MATH  Google Scholar 

  8. C. Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods. M2AN Math. Model. Numer. Anal. 33(6), 1187–1202 (1999)

    Google Scholar 

  9. C.A. Duarte, I. Babuška, J.T. Oden, Generalized finite element methods for three-dimensional structural mechanics problems. Comput. Struct. 77(2), 215–232 (2000). MR 1768540 (2001b:74053)

    Google Scholar 

  10. C.A. Duarte, D.-J. Kim, Analysis and applications of a generalized finite element method with global–local enrichment functions. Comput. Methods Appl. Mech. Eng. 197(6–8), 487–504 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. C.A. Duarte, J.T. Oden, An h-p adaptive method using clouds. Comput. Methods Appl. Mech. Eng. 139(1–4), 237–262 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. C.A. Duarte, L.G. Reno, A. Simone, A high-order generalized FEM for through-the-thickness branched cracks. Int. J. Numer. Methods Eng. 72(3), 325–351 (2007). MR 2355178

    Google Scholar 

  13. T.-P. Fries, H.-G. Matthies, Classification and overview of meshfree methods. Technical report 2003-3, Technische Universität Braunschweig (2004)

    Google Scholar 

  14. A. Gloria, Reduction of the resonance error—Part 1: approximation of homogenized coefficients. Math. Models Methods Appl. Sci. 21(8), 1601–1630 (2011). MR 2826466

    Google Scholar 

  15. M. Griebel, M.A. Schweitzer, A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic PDEs. SIAM J. Sci. Comput. 22(3), 853–890 (2000). (electronic) MR 1785338 (2001i:65105)

    Google Scholar 

  16. M. Griebel, M.A. Schweitzer, A particle-partition of unity method. II. Efficient cover construction and reliable integration. SIAM J. Sci. Comput. 23(5), 1655–1682 (2002). (electronic) MR 1885078 (2003b:65118)

    Google Scholar 

  17. V. Gupta, C.A. Duarte, I. Babuška, U. Banerjee, A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 266(0), 23–39 (2013)

    CrossRef  MATH  Google Scholar 

  18. P. Henning, A. Målqvist, D. Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM: Math. Model. Numer. Anal. eFirst (2013)

    Google Scholar 

  19. P. Henning, D. Peterseim, Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11(4), 1149–1175 (2013). MR 3123820

    Google Scholar 

  20. M. Holst, Application of domain decomposition and partition of unity methods in physics and geometry. Domain decomposition methods in science and engineering, National Autonomous University of Mexico, México, 2003, pp. 63–78 (electronic). MR 2093735

    Google Scholar 

  21. T.Y. Hou, X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997). MR 1455261 (98e:73132)

    Google Scholar 

  22. T.J.R. Hughes, G.R. Feijóo, L. Mazzei, J.-B. Quincy, The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1–2), 3–24 (1998). MR 1660141 (99m:65239)

    Google Scholar 

  23. D.-J. Kim, C.A. Duarte, S.P. Proença, A generalized finite element method with global-local enrichment functions for confined plasticity problems. Comput. Mech. 50(5), 563–578 (2012) (English)

    CrossRef  MATH  MathSciNet  Google Scholar 

  24. T.J. Liszka, C.A. Duarte, W. Tworzydlo, HP-meshless cloud method. Comput. Methods Appl. Mech. Eng. 139(1–4), 263–288 (1996)

    CrossRef  MATH  Google Scholar 

  25. A. Målqvist, Multiscale methods for elliptic problems. Multiscale Model. Simul. 9(3), 1064–1086 (2011). MR 2831590 (2012j:65419)

    Google Scholar 

  26. A. Målqvist, D. Peterseim, Localization of elliptic multiscale problems. Published electronically (in Mathematics of Computation, 2014)

    Google Scholar 

  27. A. Målqvist, D. Peterseim, Computation of eigenvalues by numerical upscaling (2012). ArXiv e-prints 1212.0090

    Google Scholar 

  28. J.M. Melenk, I. Babuška, The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 289–314 (1996)

    CrossRef  MATH  Google Scholar 

  29. N. Moës, J.E. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)

    CrossRef  MATH  Google Scholar 

  30. J.T. Oden, C.A. Duarte, O.C. Zienkiewicz, A new cloud-based HP finite element method. Comput. Methods Appl. Mech. Eng. 153(1–2), 117–126 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  31. H. Owhadi, L. Zhang, L. Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM: Math. Model. Numer. Anal. 48(2), 517–572 (2014)

    CrossRef  MATH  MathSciNet  Google Scholar 

  32. M.A. Schweitzer, Generalizations of the finite element method. Cent. Eur. J. Math. 10(1), 3–24 (2012). MR 2863778 (2012k:65150)

    Google Scholar 

  33. T. Strouboulis, I. Babuška, K. Copps, The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181(1–3), 43–69 (2000). MR 1734667 (2000h:74077)

    Google Scholar 

  34. T. Strouboulis, K. Copps, I. Babuška, The generalized finite element method. Comput. Methods Appl. Mech. Eng. 190(32–33), 4081–4193 (2001). MR 1832655 (2002h:65195)

    Google Scholar 

  35. C. Wang, Z.-p. Huang, L.-k. Li, Two-grid partition of unity method for second order elliptic problems. Appl. Math. Mech. (English Ed.) 29(4), 527–533 (2008). MR 2405141 (2009b:65329)

    Google Scholar 

  36. E. Weinan, B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003). MR 1979846 (2004b:35019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Morgenstern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Henning, P., Morgenstern, P., Peterseim, D. (2015). Multiscale Partition of Unity. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations VII. Lecture Notes in Computational Science and Engineering, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-06898-5_10

Download citation