A. Abdulle, E. Weinan, B. Engquist, E. Vanden-Eijnden, The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012). MR 2916381
Google Scholar
H.W. Alt, Lineare Funktionalanalysis (Springer, Berlin/Heidelberg, 2006)
MATH
Google Scholar
I. Babuška, U. Banerjee, J.E. Osborn, Meshless and generalized finite element methods: a survey of some major results, in Meshfree Methods for Partial Differential Equations, Bonn, 2001. Lecture Notes in Computational Science and Engineering, vol. 26 (Springer, Berlin, 2003), pp. 1–20. MR 2003426 (2004h:65116)
Google Scholar
I. Babuška, G. Caloz, J.E. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31(4), 945–981 (1994). MR 1286212 (95g:65146)
Google Scholar
I. Babuška, R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9(1), 373–406 (2011). MR 2801210 (2012e:65259)
Google Scholar
I. Babuška, J.M. Melenk, The partition of unity method. Int. J. Numer. Methods Eng. 40, 727–758 (1996)
CrossRef
Google Scholar
T. Belytschko, N. Moës, S. Usui, C. Parimi, Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50(4), 993–1013 (2001)
CrossRef
MATH
Google Scholar
C. Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods. M2AN Math. Model. Numer. Anal. 33(6), 1187–1202 (1999)
Google Scholar
C.A. Duarte, I. Babuška, J.T. Oden, Generalized finite element methods for three-dimensional structural mechanics problems. Comput. Struct. 77(2), 215–232 (2000). MR 1768540 (2001b:74053)
Google Scholar
C.A. Duarte, D.-J. Kim, Analysis and applications of a generalized finite element method with global–local enrichment functions. Comput. Methods Appl. Mech. Eng. 197(6–8), 487–504 (2008)
CrossRef
MATH
MathSciNet
Google Scholar
C.A. Duarte, J.T. Oden, An h-p adaptive method using clouds. Comput. Methods Appl. Mech. Eng. 139(1–4), 237–262 (1996)
CrossRef
MATH
MathSciNet
Google Scholar
C.A. Duarte, L.G. Reno, A. Simone, A high-order generalized FEM for through-the-thickness branched cracks. Int. J. Numer. Methods Eng. 72(3), 325–351 (2007). MR 2355178
Google Scholar
T.-P. Fries, H.-G. Matthies, Classification and overview of meshfree methods. Technical report 2003-3, Technische Universität Braunschweig (2004)
Google Scholar
A. Gloria, Reduction of the resonance error—Part 1: approximation of homogenized coefficients. Math. Models Methods Appl. Sci. 21(8), 1601–1630 (2011). MR 2826466
Google Scholar
M. Griebel, M.A. Schweitzer, A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic PDEs. SIAM J. Sci. Comput. 22(3), 853–890 (2000). (electronic) MR 1785338 (2001i:65105)
Google Scholar
M. Griebel, M.A. Schweitzer, A particle-partition of unity method. II. Efficient cover construction and reliable integration. SIAM J. Sci. Comput. 23(5), 1655–1682 (2002). (electronic) MR 1885078 (2003b:65118)
Google Scholar
V. Gupta, C.A. Duarte, I. Babuška, U. Banerjee, A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 266(0), 23–39 (2013)
CrossRef
MATH
Google Scholar
P. Henning, A. Målqvist, D. Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM: Math. Model. Numer. Anal. eFirst (2013)
Google Scholar
P. Henning, D. Peterseim, Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11(4), 1149–1175 (2013). MR 3123820
Google Scholar
M. Holst, Application of domain decomposition and partition of unity methods in physics and geometry. Domain decomposition methods in science and engineering, National Autonomous University of Mexico, México, 2003, pp. 63–78 (electronic). MR 2093735
Google Scholar
T.Y. Hou, X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997). MR 1455261 (98e:73132)
Google Scholar
T.J.R. Hughes, G.R. Feijóo, L. Mazzei, J.-B. Quincy, The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1–2), 3–24 (1998). MR 1660141 (99m:65239)
Google Scholar
D.-J. Kim, C.A. Duarte, S.P. Proença, A generalized finite element method with global-local enrichment functions for confined plasticity problems. Comput. Mech. 50(5), 563–578 (2012) (English)
CrossRef
MATH
MathSciNet
Google Scholar
T.J. Liszka, C.A. Duarte, W. Tworzydlo, HP-meshless cloud method. Comput. Methods Appl. Mech. Eng. 139(1–4), 263–288 (1996)
CrossRef
MATH
Google Scholar
A. Målqvist, Multiscale methods for elliptic problems. Multiscale Model. Simul. 9(3), 1064–1086 (2011). MR 2831590 (2012j:65419)
Google Scholar
A. Målqvist, D. Peterseim, Localization of elliptic multiscale problems. Published electronically (in Mathematics of Computation, 2014)
Google Scholar
A. Målqvist, D. Peterseim, Computation of eigenvalues by numerical upscaling (2012). ArXiv e-prints 1212.0090
Google Scholar
J.M. Melenk, I. Babuška, The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 289–314 (1996)
CrossRef
MATH
Google Scholar
N. Moës, J.E. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)
CrossRef
MATH
Google Scholar
J.T. Oden, C.A. Duarte, O.C. Zienkiewicz, A new cloud-based HP finite element method. Comput. Methods Appl. Mech. Eng. 153(1–2), 117–126 (1998)
CrossRef
MATH
MathSciNet
Google Scholar
H. Owhadi, L. Zhang, L. Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM: Math. Model. Numer. Anal. 48(2), 517–572 (2014)
CrossRef
MATH
MathSciNet
Google Scholar
M.A. Schweitzer, Generalizations of the finite element method. Cent. Eur. J. Math. 10(1), 3–24 (2012). MR 2863778 (2012k:65150)
Google Scholar
T. Strouboulis, I. Babuška, K. Copps, The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181(1–3), 43–69 (2000). MR 1734667 (2000h:74077)
Google Scholar
T. Strouboulis, K. Copps, I. Babuška, The generalized finite element method. Comput. Methods Appl. Mech. Eng. 190(32–33), 4081–4193 (2001). MR 1832655 (2002h:65195)
Google Scholar
C. Wang, Z.-p. Huang, L.-k. Li, Two-grid partition of unity method for second order elliptic problems. Appl. Math. Mech. (English Ed.) 29(4), 527–533 (2008). MR 2405141 (2009b:65329)
Google Scholar
E. Weinan, B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003). MR 1979846 (2004b:35019)
Google Scholar