Meshfree Methods for Partial Differential Equations VII

  • Michael Griebel
  • Marc Alexander Schweitzer

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 100)

Table of contents

  1. Front Matter
    Pages i-viii
  2. Stephen D. Bond, Richard B. Lehoucq, Stephen T. Rowe
    Pages 1-21
  3. Susanne C. Brenner, Christopher B. Davis, Li-yeng Sung
    Pages 23-41
  4. Zili Dai, Miguel A. Bessa, Shaofan Li, Wing Kam Liu
    Pages 43-60
  5. Carsten Dehning, Claas Bierwisch, Torsten Kraft
    Pages 61-79
  6. Patrick Diehl, Marc Alexander Schweitzer
    Pages 81-95
  7. Georg C. Ganzenmüller, Stefan Hiermaier, Michael May
    Pages 163-183
  8. Patrick Henning, Philipp Morgenstern, Daniel Peterseim
    Pages 185-204
  9. Anthony Jefferies, Jörg Kuhnert, Lars Aschenbrenner, Uwe Giffhorn
    Pages 205-221
  10. Dong Zhou, Benjamin Seibold, David Shirokoff, Prince Chidyagwai, Rodolfo Ruben Rosales
    Pages 223-246
  11. Marc Alexander Schweitzer, Albert Ziegenhagel
    Pages 269-292
  12. Back Matter
    Pages 317-324

About these proceedings

Introduction

Meshfree methods, particle methods, and generalized finite element methods have witnessed substantial development since the mid 1990s. The growing interest in these methods is due in part to the fact that they are extremely flexible numerical tools and can be interpreted in a number of ways. For instance, meshfree methods can be viewed as a natural extension of classical finite element and finite difference methods to scattered node configurations with no fixed connectivity. Furthermore, meshfree methods offer a number of advantageous features which are especially attractive when dealing with multiscale phenomena: a priori knowledge about particular local behavior of the solution can easily be introduced in the meshfree approximation space, and coarse-scale approximations can be seamlessly refined with fine-scale information. This volume collects selected papers presented at the Seventh International Workshop on Meshfree Methods, held in Bonn, Germany in September 2013. They address various aspects of this highly dynamic research field and cover topics from applied mathematics, physics and engineering.

Keywords

meshfree methods partial differential equations particle methods

Editors and affiliations

  • Michael Griebel
    • 1
  • Marc Alexander Schweitzer
    • 2
  1. 1.Institut für Numerische SimulationUniversität BonnBonnGermany
  2. 2.Institut für Numerische SimulationUniversität BonnBonnGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-06898-5
  • Copyright Information Springer International Publishing Switzerland 2015
  • Publisher Name Springer, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-06897-8
  • Online ISBN 978-3-319-06898-5
  • Series Print ISSN 1439-7358
  • Series Online ISSN 2197-7100
  • About this book