Skip to main content

Coupled Map Lattice Model for Insects and Spreadable Substances

  • Chapter
  • First Online:
Ecological Modelling Applied to Entomology

Part of the book series: Entomology in Focus ((ENFO,volume 1))

Abstract

Understanding the spreading dynamics of insects and particles naturally or artificially associated with them, such as seeds, pollen, repellents or insecticides, is of paramount importance for pest management and conservation programs. Insects and chemical or natural products exhibit dispersal patterns that depend on the environment where they are and their respective sizes. In this chapter, we present a Coupled Map Lattice formalism to investigate the theoretical dynamics of the spread of insects and chemical substances sprayed over them. The models consider a habitat with abundant resources and therefore insects moving only in response to chemical concentrations. Diffusion and wind are the mechanisms used to spread chemical substances. Continuous and discrete models are used to describe the system on a macroscopic scale. The results are discussed taking into account rules for movement, escape behaviour and integrated pest management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beck TC, McClay A, Lewis M (2003) Spatially explicit models for weed-biocontrol agent interactions: scentless chamomile as a case study. In: Proceedings of the XI international symposium on biological control of weeds, Canberra

    Google Scholar 

  • Benhamou S (2014) Of scales and stationarity in animal movements. Ecol Lett 17:261–272

    Article  PubMed  Google Scholar 

  • Brendel E (2013) The effect of linseed oil on rose scale Aulacaspis rosae (Bouch,) (Hemiptera: Diaspididae) in Greenhouse grown rose crops as an alternative pest management strategy. Gesunde Pflanzen 65:73–77

    Article  CAS  Google Scholar 

  • Codling EA, Plank MJ, Benhamou S (2008) Random walk models in biology. J R Soc Interface 5:813–834

    Article  PubMed  PubMed Central  Google Scholar 

  • Comins HN, Hassell MP, May RM (1992) The spatial dynamics of host-parasitoid systems. J An Ecol 61:735–748

    Article  Google Scholar 

  • Coulson C, Spooner PG, Lunt ID, Watson SJ (2014) From the matrix to roadsides and beyond: the role of isolated paddock trees as dispersal points for invasion. Divers Distrib 20:137–148

    Article  Google Scholar 

  • de-Camino-Beck T, Lewis MA (2009) Invasion with stage-structured coupled map lattices: Application to the spread of scentless chamomile. Ecol Model 220:3394–3403

    Google Scholar 

  • Esker PD, Sparks AH, Antony G, Bates M, Dall’Acqua W, Frank EE, Huebel L, Segovia V, Garrett KA (2007) Ecology and epidemiology in R: modeling dispersal gradients. Plant Health Instructor. doi:10.1094/PHI-A-2007-1226-03. https://www.apsnet.org/edcenter/advanced/topics/EcologyAndEpidemiologyInR/ModelingDispersalGradients/Pages/default.aspx

  • Fogel MN, Schneider MI, Desneux N, González B, Ronco AE (2013) Impact of the neonicotinoid acetamiprid on immature stages of the predator Eriopis connexa (Coleoptera: Coccinellidae). Ecotoxicology 22:1063–1071

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Li WL, Li ZZ, Dai HW, Liu HT (2007) Spatial synchrony in host-parasitoid populations. Ecol Model 204:29–39

    Article  Google Scholar 

  • Godoy WAC, Costa MIS (2005) Dynamics of extinction in coupled populations of the flour beetle Tribolium castaneum. Revista Brasileira de Biologia 65:271–280 (corrigir no Texto que está 2006, o correto é 2005)

    Google Scholar 

  • Govindarajan M, Sivakumar R (2012) Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res 110:1607–1620

    Article  PubMed  Google Scholar 

  • Hassanali A, Herren H, Khan ZR, Pickett JA, Woodcock CM (2008) Integrated pest management: the push-pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philos Trans R Soc B 363:611–621

    Article  Google Scholar 

  • Hassell MP, Comins HN, May RM (1991) Spatial structure and chaos in insect population dynamics. Nature 353:255–258

    Article  Google Scholar 

  • Haynes KF (1988) Sublethal effects of neurotoxic insecticides on insect behaviour. Ann Rev Entomol 33:149–168

    Article  CAS  Google Scholar 

  • Huntington TE, Higley LG (2010) Decomposed flesh as a vitellogenic protein source for the forensically important Lucilia sericata (Diptera: Calliphoridae). J Med Entomol 47:482–486

    Article  PubMed  Google Scholar 

  • Ito K (2013) Integrated numerical simulation with fungal spore deposition and subsequent fungal growth on bathroom wall surface. Indoor Built Environ 22:881–896

    Article  Google Scholar 

  • Jeanson R, Blanco S, Fournier R, Deneubourg J-L, Fourcassié V, Theraulaz G (2003) A model of animal movements in a bounded space. J Theor Biol 225:443–451

    Article  PubMed  Google Scholar 

  • Keller EF, Segel LA (1971) Travelling bands of chemotactic bacteria: a theoretical analysis. J Theor Biol 30:235–248

    Article  PubMed  CAS  Google Scholar 

  • Kot M (2001) Elements of mathematical ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kaneko K (1986) Turbulence in coupled map lattices. Phys D 18:475–476

    Article  Google Scholar 

  • Liere H, Jackson D, Vandermeer J (2012) Ecological complexity in a coffee agroecosystem: spatial heterogeneity, population persistence and biological control. PLoS One 7:e45508

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lin CC, Segel LA (1988) Mathematical applied to deterministic problems in the natural sciences. SIAM, Philadelphia

    Book  Google Scholar 

  • Méndez V, Llopis I, Campos D, Horsthemke W (2010) Extinction and chaotic patterns in map lattices under hostile conditions. Bull Math Biol 72:432–443

    Article  PubMed  Google Scholar 

  • Mistro DC, Rodrigues LAD, Varriale MC (2009) The role of spatial refuges in coupled map lattice model for host-parasitoid systems. Bull Math Biol 71:1934–1953

    Article  PubMed  Google Scholar 

  • Mistro DC, Rodrigues LAD, Petrovskii S (2012) Spatiotemporal complexity of biological invasion in a space- and time-discrete predator-prey system with the strong Allee effect. Ecol Complex 9:16–32

    Article  Google Scholar 

  • Ngueleu SK, Grathwohl P, Cirpka AO (2013) Effect of natural particles on the transport of lindane in saturated porous media: laboratory experiments and model-based analysis. J Contam Hydrol 149:13–26

    Article  PubMed  CAS  Google Scholar 

  • Nicholson AJ, Bailey VA (1935) The balance of animal population. Part I. Proc Zool Soc Lond 3:551–598

    Article  Google Scholar 

  • Nikpay A (2007) Insecticidal efficacy of three vegetable oils as post-harvest grain protectants of stored wheat against Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). Insect Sci 14:145–150

    Article  CAS  Google Scholar 

  • Okubo A, Grünbaum D (2001) Mathematical treatment of biological diffusion. In: Okubo A, Levin SA (eds) Diffusion and ecological problems: Modern Perspectives. Springer, New York

    Chapter  Google Scholar 

  • Okubo A, Levin SA (2001) Diffusion and ecological problems. Modern perspectives, 2nd edn. Springer, New York

    Google Scholar 

  • Oliver JC, Stein LR (2011) Evolution of influence: signalling in a lycaenid-ant interaction. Evol Ecol 25:1205–1216

    Article  Google Scholar 

  • Olivero-Verbel J, Tirado-Ballestas I, Caballero-Gallardo K et al (2013) Essential oils applied to the food act as repellents toward Tribolium castaneum. J Stored Prod Res 55:145–147

    Article  Google Scholar 

  • Reigada C, Aguiar MAM (2012) Host-parasitoid persistence over variable spatio-temporally susceptible habitats: bottom-up effects of ephemeral resources. Oikos 121:1665–1679

    Article  Google Scholar 

  • Rodrigues LAD, Mistro DC, Petrovskii S (2011) Pattern formation, long-term transients, and the Turing-Hopf bifurcation in a space- and time-discrete predator-prey system. Bull Math Biol 73:1812–1840

    Article  PubMed  Google Scholar 

  • Rodrigues LAD, Mistro DC, Petrovskii S (2012) Pattern formation in a space- and time-discrete predator-prey system with strong Allee effect. Theor Ecol 5:341–362

    Article  Google Scholar 

  • Rodrigues LAD, Varriale MC, Godoy WAC, Mistro DC (2013) Spatiotemporal dynamics of an insect population in response to chemical substances. Ecol Complex 16:51–58

    Article  Google Scholar 

  • Segel LA (1978) Mathematical models for cellular behavior. In: Levin SA (ed) Studies in mathematical biology, vol 15 Mathematical Association of America, Washington, pp 156–190

    Google Scholar 

  • Semmler M, Abdel-Ghaffar F, Schmidt J et al (2014) Evaluation of biological and chemical insect repellents and their potential adverse effects. Parasitol Res 113:185–188

    Article  PubMed  Google Scholar 

  • Shigesada N, Kawasaki K, Teramoto E (1986) Traveling periodic waves in heterogeneous environments. Theor Popul Biol 30:143–160

    Article  Google Scholar 

  • Shigesada N, Kawasaki K, Teramoto E (1987) The speed of traveling frontal waves in heterogeneous environments. In: Teramoto E, Yamaguti M (eds) Mathematical topics in population biology, morphogenesis and neurosciences. Lecture notes in biomathematics, vol 71. Springer, Berlin, pp 88–97

    Chapter  Google Scholar 

  • Snell RS (2014) Simulating long-distance seed dispersal in a dynamic vegetation model. Global Ecol Biogeogr 23:89–98

    Article  Google Scholar 

  • Solé RV, Bascompte J (2006) Self-organizing in complex ecosystems. Princeton University Press, Princeton/Oxford

    Google Scholar 

  • Solé RV, Valls J (1991) Order and chaos in a 2D-Lotka-Volterra coupled map lattice. Phys Lett A 153:330–336

    Article  Google Scholar 

  • Solé RV, Bascompte J, Valls J (1992) Nonequilibrium dynamics in lattice ecosystems: chaotic stability and dissipative structures. Chaos 2:387–395

    Article  PubMed  Google Scholar 

  • Tabanca N, Wang M, Avonto C, Chittiboyina AG, Parcher JF, Carrol JF, Kramer M, Khan IA (2013) Bioactivity-guided investigation of geranium essential oils as natural tick repellents. J Agric Food Chem 61:4101–4107

    Article  PubMed  CAS  Google Scholar 

  • Tong F, Bloomquist JF (2013) Plant essential oils affect the toxicities of carbaryl and permethrin against Aedes aegypti (Diptera: Culicidae). J Med Entomol 50:826–832

    Article  PubMed  CAS  Google Scholar 

  • Turchin P (1989) Beyond simple diffusion: models of not-so-simple movement of animals and cells. Comments Theor Biol 1(2):65–83

    Google Scholar 

  • White SM, White KAJ (2005) Relating coupled map lattices to integro-difference equations: dispersal-driven instabilities in coupled map lattices. J Theor Biol 235:463–475

    Article  PubMed  Google Scholar 

  • Yamamura K (2004) Dispersal distance of corn pollen under fluctuating diffusion coefficient. Popul Ecol 46:87–101

    Article  Google Scholar 

  • Yang Y, Wilson LT, Makela ME, Marchetti MA (1998) Accuracy of numerical methods for solving the advection-diffusion equation as applied to spore and insect dispersal. Ecol Model 109:1–24

    Article  Google Scholar 

Download references

Acknowledgements

DCM and LADR have been supported by FAPERGS, grants number 12/2199-1 and 12/2133-4, respectively. The authors thank Nicolas Z. Coelho for the technical assistance with Figs. 7.37.7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Alberto D. Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodrigues, L.A.D., Varriale, M.C., Godoy, W.A.C., Mistro, D.C. (2014). Coupled Map Lattice Model for Insects and Spreadable Substances. In: Ferreira, C., Godoy, W. (eds) Ecological Modelling Applied to Entomology. Entomology in Focus, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-06877-0_7

Download citation

Publish with us

Policies and ethics