Skip to main content

Oxidative Stress and the Proteasome: Mechanisms and Therapeutic Relevance

  • Chapter
  • First Online:
Resistance to Proteasome Inhibitors in Cancer

Abstract

The proteasome is a key mediator of the oxidative environment in cells. Reactive oxygen species (ROS) are produced by normal cellular metabolic processes, and the proteasome can mediate ROS levels by degrading proteins that generate ROS and by controlling antioxidant turnover, as well as by clearing oxidatively damaged proteins from cells. The proteasome itself is also regulated by ROS, with certain subunits being susceptible to oxidative modification and damage, while other subunits are transcriptionally up-regulated as part of the antioxidant response. Proteasome inhibition has been shown to increase ROS in many cellular contexts, and this increase in ROS is often integral to cell death induction. Cells that have elevated basal levels of antioxidants, or that can mount a quick antioxidant response that often includes increasing proteasome subunit levels, can neutralize ROS and escape proteasome inhibitor-induced death. Many current studies are focused on overcoming this resistance by combining proteasome inhibitors with other ROS-generating agents, such as histone deacetylase inhibitors and certain kinase inhibitors, which can cause synergistic ROS induction and death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukemia

ARE:

Antioxidant responsive element

ASK1:

Apoptosis signal-related kinase 1

(-)-EGCG:

(-)-Epigallocatechin gallate

GSH:

Glutathione

GSSG:

Glutathione disulfide

F1:

Ferritin

H2O2:

Hydrogen peroxide

HDACi:

Histone deacetylase inhibitor

HO–:

Hydroxyl radical

HO-1:

Heme oxygenase-1

IκBα:

NF-κB inhibitor α

IRE:

Iron responsive element

IRP2:

Iron regulatory protein 2

MEFs:

Mouse embryonic fibroblasts

mTOR:

Mammalian target of rapamycin

mTORC1:

Mammalian target of rapamycin complex 1

NAC:

N-acetyl cysteine

NF-κB:

Nuclear factor-κB

Nox:

NADPH oxidase

Nrf2:

Nuclear factor-like 2

O2–:

Superoxide

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SOD2:

Superoxide dismutase 2

TNF-α:

Tumor necrosis factor-α

Trx:

Thioredoxin

References

  1. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4): 483–495

    PubMed  CAS  Google Scholar 

  2. Lee MH, Hyun DH, Jenner P, Halliwell B (2001) Effect of proteasome inhibition on cellular oxidative damage, antioxidant defences and nitric oxide production. J Neurochem 78(1):32–41

    PubMed  CAS  Google Scholar 

  3. Leak RK, Zigmond MJ, Liou AKF (2008) Adaptation to chronic MG132 reduces oxidative toxicity by a CuZnSOD-dependent mechanism. J Neurochem 106(2):860–874

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Li X, Lu D, He F, Zhou H, Liu Q, Wang Y, Shao C, Gong Y (2011) Cullin 4B protein ubiquitin ligase targets peroxiredoxin III for degradation. J Biol Chem 286(37):32344–32354

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Rhee SG, Yang K-S, Kang SW, Woo HA, Chang T-S (2005) Controlled elimination of intracellular H2O2: regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal 7(5–6):619–626

    PubMed  CAS  Google Scholar 

  6. Rudeck M, Volk T, Sitte N, Grune T (2000) Ferritin oxidation in vitro: implication of iron release and degradation by the 20S proteasome. IUBMB Life 49(5):451–456

    PubMed  CAS  Google Scholar 

  7. Antosiewicz J, Ziolkowski W, Kaczor JJ, Herman-Antosiewicz A (2007) Tumor necrosis factor-α-induced reactive oxygen species formation is mediated by JNK1-dependent ferritin degradation and elevation of labile iron pool. Free Radic Biol Med 43(2):265–270

    PubMed  CAS  Google Scholar 

  8. Iwai K, Klausner RD, Rouault TA (1995) Requirements for iron-regulated degradation of the RNA binding protein, iron regulatory protein 2. EMBO J 14(21):5350–5357

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Iwai K, Drake SK, Wehr NB, Weissman AM, LaVaute T, Minato N, Klausner RD, Levine RL, Rouault TA (1998) Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. Proc Natl Acad Sci U S A 95(9):4924–4928

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Guo B, Phillips JD, Yu Y, Leibold EA (1995) Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J Biol Chem 270(37):21645–21651

    PubMed  CAS  Google Scholar 

  11. LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, Drake SK, Miller G, Abu-Asab M, Tsokos M (2001) Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 27(2):209–214

    PubMed  CAS  Google Scholar 

  12. Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Jayawardena S, De Smaele E, Cong R, Beaumont C, Torti FM, Torti SV, Franzoso G (2004) Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 119(4):529–542

    PubMed  CAS  Google Scholar 

  13. Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, Piao J-H, Yagita H, Okumura K, Doi T, Nakano H (2003) NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22(15):3898–3909

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78(5):773–785

    PubMed  CAS  Google Scholar 

  15. Sunwoo JB, Chen Z, Dong G, Yeh N, Crowl BC, Sausville E, Adams J, Elliott P, Van Waes C (2001) Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res 7(5):1419–1428

    PubMed  CAS  Google Scholar 

  16. Rojo AI, Salinas M, Martín D, Perona R, Cuadrado A (2004) Regulation of Cu/Zn-superoxide dismutase expression via the phosphatidylinositol 3 kinase/Akt pathway and nuclear factor-kappaB. J Neurosci 24(33):7324–7334

    PubMed  CAS  Google Scholar 

  17. Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10(7):709–720

    PubMed  CAS  Google Scholar 

  18. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10(8):2247

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Li N, Karin M (1999) Is NF-kappaB the sensor of oxidative stress? FASEB J 13(10): 1137–1143

    PubMed  CAS  Google Scholar 

  20. Traenckner EB, Wilk S, Baeuerle PA (1994) A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B. EMBO J 13(22):5433

    PubMed  CAS  PubMed Central  Google Scholar 

  21. McConkey DJ, Zhu K (2008) Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat 11(4):164–179

    PubMed  CAS  Google Scholar 

  22. Cusack JC, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J, Baldwin AS (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-κB inhibition. Cancer Res 61(9):3535–3540

    PubMed  CAS  Google Scholar 

  23. Russo SM, Tepper JE, Baldwin AS, Liu R, Adams J, Elliott P, Cusack JC (2001) Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB. Int J Radiat Oncol Biol Phys 50(1):183–193

    PubMed  CAS  Google Scholar 

  24. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(2): 335–344

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Goetz ME, Luch A (2008) Reactive species: a cell damaging rout assisting to chemical carcinogens. Cancer Lett 266(1):73–83

    PubMed  CAS  Google Scholar 

  26. Kovacic HN, Irani K, Goldschmidt-Clermont PJ (2001) Redox regulation of human Rac1 stability by the proteasome in human aortic endothelial cells. J Biol Chem 276(49): 45856–45861

    PubMed  CAS  Google Scholar 

  27. Landry WD, Woolley JF, Cotter TG (2013) Imatinib and Nilotinib inhibit Bcr–Abl-induced ROS through targeted degradation of the NADPH oxidase subunit p22phox. Leuk Res 37(2):183–189

    PubMed  CAS  Google Scholar 

  28. Sitte N, Merker K, Grune T (1998) Proteasome-dependent degradation of oxidized proteins in MRC-5 fibroblasts. FEBS Lett 440(3):399–402

    PubMed  CAS  Google Scholar 

  29. Ferrington DA, Sun H, Murray KK, Costa J, Williams TD, Bigelow DJ, Squier TC (2001) Selective degradation of oxidized calmodulin by the 20 S proteasome. J Biol Chem 276(2):937–943

    PubMed  CAS  Google Scholar 

  30. Grune T, Jung T, Merker K, Davies KJA (2004) Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol 36(12):2519–2530

    PubMed  CAS  Google Scholar 

  31. Shringarpure R, Grune T, Davies K (2001) Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cell Mol Life Sci 58(10):1442–1450

    PubMed  CAS  Google Scholar 

  32. Pacifici RE, Kono Y, Davies KJ (1993) Hydrophobicity as the signal for selective degradation of hydroxyl radical-modified hemoglobin by the multicatalytic proteinase complex, proteasome. J Biol Chem 268(21):15405–15411

    PubMed  CAS  Google Scholar 

  33. Shringarpure R, Grune T, Mehlhase J, Davies KJA (2003) Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem 278(1):311–318

    PubMed  CAS  Google Scholar 

  34. Ishii T, Sakurai T, Usami H, Uchida K (2005) Oxidative modification of proteasome: identification of an oxidation-sensitive subunit in 26 S proteasome. Biochemistry 44(42): 13893–13901

    PubMed  CAS  Google Scholar 

  35. Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies KJ, Grune T (1998) Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J 335(Pt 3):637–642

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Grune T, Reinheckel T, Davies KJ (1996) Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome. J Biol Chem 271(26):15504–15509

    PubMed  CAS  Google Scholar 

  37. Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83(3):301–310

    PubMed  CAS  Google Scholar 

  38. Zhu K, Dunner K, McConkey DJ (2009) Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29(3):451–462

    PubMed  PubMed Central  Google Scholar 

  39. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292(5521):1552–1555

    PubMed  CAS  Google Scholar 

  40. Conconi M, Friguet B (1997) Proteasome inactivation upon aging and on oxidation-effect of HSP 90. Mol Biol Rep 24(1–2):45–50

    PubMed  CAS  Google Scholar 

  41. Conconi M, Petropoulos I, Emod I, Turlin E, Biville F, Friguet B (1998) Protection from oxidative inactivation of the 20S proteasome by heat-shock protein 90. Biochem J 333(Pt 2): 407–415

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Ding Q, Keller JN (2001) Proteasome inhibition in oxidative stress neurotoxicity: implications for heat shock proteins. J Neurochem 77(4):1010–1017

    PubMed  CAS  Google Scholar 

  43. Ding Q, Reinacker K, Dimayuga E, Nukala V, Drake J, Butterfield DA, Dunn JC, Martin S, Bruce-Keller AJ, Keller JN (2003) Role of the proteasome in protein oxidation and neural viability following low-level oxidative stress. FEBS Lett 546(2–3):228–232

    PubMed  CAS  Google Scholar 

  44. Stuehr DJ, Marletta MA (1987) Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines, or interferon-gamma. J Immunol 139(2):518–525

    PubMed  CAS  Google Scholar 

  45. Seifert U, Bialy LP, Ebstein F, Bech-Otschir D, Voigt A, Schröter F, Prozorovski T, Lange N, Steffen J, Rieger M, Kuckelkorn U, Aktas O, Kloetzel P-M, Krüger E (2010) Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142(4):613–624

    PubMed  CAS  Google Scholar 

  46. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99(18):11908–11913

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57(3–4):145–155

    PubMed  CAS  Google Scholar 

  48. Kwak M-K, Wakabayashi N, Greenlaw JL, Yamamoto M, Kensler TW (2003) Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol 23(23):8786–8794

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Furukawa M, Xiong Y (2005) BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 25(1):162–171

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236(2):313–322

    PubMed  CAS  Google Scholar 

  51. Kobayashi A, Kang M-I, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24(16):7130–7139

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Pickering AM, Linder RA, Zhang H, Forman HJ, Davies KJA (2012) Nrf2-dependent induction of proteasome and Pa28αβ regulator are required for adaptation to oxidative stress. J Biol Chem 287(13):10021–10031

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Pei X-Y, Dai Y, Grant S (2004) Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 10(11):3839–3852

    PubMed  CAS  Google Scholar 

  54. Perez-Galan P (2006) The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 107(1):257–264

    PubMed  CAS  Google Scholar 

  55. Ling Y-H, Liebes L, Zou Y, Perez-Soler R (2003) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem 278(36): 33714–33723

    PubMed  CAS  Google Scholar 

  56. Minami T, Adachi M, Kawamura R, Zhang Y, Shinomura Y, Imai K (2005) Sulindac enhances the proteasome inhibitor bortezomib-mediated oxidative stress and anticancer activity. Clin Cancer Res 11(14):5248–5256

    PubMed  CAS  Google Scholar 

  57. Llobet D, Eritja N, Encinas M, Sorolla A, Yeramian A, Schoenenberger JA, Llombart-Cussac A, Marti RM, Matias-Guiu X, Dolcet X (2008) Antioxidants block proteasome inhibitor function in endometrial carcinoma cells. Anticancer Drugs 19(2):115–124

    PubMed  CAS  Google Scholar 

  58. Fribley A, Zeng Q, Wang C-Y (2004) Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol 24(22):9695–9704

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Zou W, Yue P, Lin N, He M, Zhou Z, Lonial S, Khuri FR, Wang B, Sun S-Y (2006) Vitamin C inactivates the proteasome inhibitor PS-341 in human cancer cells. Clin Cancer Res 12(1):273–280

    PubMed  CAS  Google Scholar 

  60. Shidoji Y, Hayashi K, Komura S, Ohishi N, Yagi K (1999) Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem Biophys Res Commun 264(2):343–347

    PubMed  CAS  Google Scholar 

  61. Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495(1):12–15

    PubMed  CAS  Google Scholar 

  62. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489

    PubMed  CAS  Google Scholar 

  63. Dames SA, Mulet JM, Rathgeb-Szabo K, Hall MN, Grzesiek S (2005) The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J Biol Chem 280(21):20558–20564

    PubMed  CAS  Google Scholar 

  64. Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441(2):523–540

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2007) Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci 120(23):4155–4166

    PubMed  CAS  Google Scholar 

  66. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135(7):1311–1323

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Galluzzi L, Kroemer G (2008) Necroptosis: a specialized pathway of programmed necrosis. Cell 135(7):1161–1163

    PubMed  CAS  Google Scholar 

  68. Thapa RJ, Basagoudanavar SH, Nogusa S, Irrinki K, Mallilankaraman K, Slifker MJ, Beg AA, Madesh M, Balachandran S (2011) NF-kappaB protects cells from gamma interferon-induced RIP1-dependent necroptosis. Mol Cell Biol 31(14):2934–2946

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Meng T-C, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9(2):387–399

    PubMed  CAS  Google Scholar 

  70. Denu JM, Tanner KG (1998) Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37(16):5633–5642

    PubMed  CAS  Google Scholar 

  71. Salmeen A, Andersen JN, Myers MP, Meng T-C, Hinks JA, Tonks NK, Barford D (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423(6941):769–773

    PubMed  CAS  Google Scholar 

  72. Weibrecht I, Böhmer S-A, Dagnell M, Kappert K, Östman A, Böhmer F-D (2007) Oxidation sensitivity of the catalytic cysteine of the protein-tyrosine phosphatases SHP-1 and SHP-2. Free Radic Biol Med 43(1):100–110

    PubMed  CAS  Google Scholar 

  73. Brumell JH, Burkhardt AL, Bolen JB, Grinstein S (1996) Endogenous reactive oxygen intermediates activate tyrosine kinases in human neutrophils. J Biol Chem 271(3):1455–1461

    PubMed  CAS  Google Scholar 

  74. Kwon J, Lee S-R, Yang K-S, Ahn Y, Kim YJ, Stadtman ER, Rhee SG (2004) Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci U S A 101(47):16419–16424

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Lim S, Clément M-V (2007) Phosphorylation of the survival kinase Akt by superoxide is dependent on an ascorbate-reversible oxidation of PTEN. Free Radic Biol Med 42(8): 1178–1192

    PubMed  CAS  Google Scholar 

  76. Covey TM, Edes K, Fitzpatrick FA (2007) Akt activation by arachidonic acid metabolism occurs via oxidation and inactivation of PTEN tumor suppressor. Oncogene 26(39): 5784–5792

    PubMed  CAS  Google Scholar 

  77. Lee SR (2002) Reversible Inactivation of the Tumor Suppressor PTEN by H2O2. J Biol Chem 277(23):20336–20342

    PubMed  CAS  Google Scholar 

  78. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17(9):2596–2606

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K, Minowa O, Miyazono K, Noda T, Ichijo H (2001) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2(3):222–228

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Choi TG, Lee J, Ha J, Kim SS (2011) Apoptosis signal-regulating kinase 1 is an intracellular inducer of p38 MAPK-mediated myogenic signalling in cardiac myoblasts. Biochem Biophys Acta 1813(8):1412–1421

    PubMed  CAS  Google Scholar 

  81. Rushworth SA, Bowles KM, MacEwan DJ (2011) High basal nuclear levels of Nrf2 in acute myeloid leukemia reduces sensitivity to proteasome inhibitors. Cancer Res 71(5): 1999–2009

    PubMed  CAS  Google Scholar 

  82. Fuchs D, Berges C, Opelz G, Daniel V, Naujokat C (2008) Increased expression and altered subunit composition of proteasomes induced by continuous proteasome inhibition establish apoptosis resistance and hyperproliferation of Burkitt lymphoma cells. J Cell Biochem 103(1):270–283

    PubMed  CAS  Google Scholar 

  83. Busse A, Kraus M, Na I-K, Rietz A, Scheibenbogen C, Driessen C, Blau IW, Thiel E, Keilholz U (2008) Sensitivity of tumor cells to proteasome inhibitors is associated with expression levels and composition of proteasome subunits. Cancer 112(3):659–670

    PubMed  CAS  Google Scholar 

  84. Lü S, Yang J, Song X, Gong S, Zhou H, Guo L, Song N, Bao X, Chen P, Wang J (2008) Point mutation of the proteasome beta5 subunit gene is an important mechanism of bortezomib resistance in bortezomib-selected variants of Jurkat T cell lymphoblastic lymphoma/leukemia line. J Pharmacol Exp Ther 326(2):423–431

    PubMed  Google Scholar 

  85. Oerlemans R, Franke NE, Assaraf YG, Cloos J, van Zantwijk I, Berkers CR, Scheffer GL, Debipersad K, Vojtekova K, Lemos C, van der Heijden JW, Ylstra B, Peters GJ, Kaspers GL, Dijkmans BAC, Scheper RJ, Jansen G (2008) Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood 112(6):2489–2499

    PubMed  CAS  Google Scholar 

  86. Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, Mitsiades C, Mitsiades N, Yasui H, Letai A, Ovaa H, Berkers C, Nicholson B, Chao T-H, Neuteboom STC, Richardson P, Palladino MA, Anderson KC (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8(5):407–419

    PubMed  CAS  Google Scholar 

  87. Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM, Demo SD, Bennett MK, Van Leeuwen FW, Chanan-Khan AA (2007) Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 110(9):3281–3290

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Kuhn DJ, Hunsucker SA, Chen Q, Voorhees PM, Orlowski M, Orlowski RZ (2009) Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 113(19):4667–4676

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Decaux O, Clément M, Magrangeas F, Gouraud W, Charbonnel C, Campion L, Loiseau HA, Minvielle S (2010) Inhibition of mTORC1 activity by REDD1 induction in myeloma cells resistant to bortezomib cytotoxicity. Cancer Sci 101(4):889–897

    PubMed  CAS  Google Scholar 

  90. Meiners S, Ludwig A, Lorenz M, Dreger H, Baumann G, Stangl V, Stangl K (2006) Nontoxic proteasome inhibition activates a protective antioxidant defense response in endothelial cells. Free Radic Biol Med 40(12):2232–2241

    PubMed  CAS  Google Scholar 

  91. Dreger H, Westphal K, Weller A, Baumann G, Stangl V, Meiners S, Stangl K (2009) Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway for proteasome inhibitor-mediated cardioprotection. Cardiovasc Res 83(2):354–361

    PubMed  CAS  Google Scholar 

  92. Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, Suzuki T, Kobayashi A, Yokota J, Sakiyama T, Shibata T, Yamamoto M, Hirohashi S (2008) Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68(5): 1303–1309

    PubMed  CAS  Google Scholar 

  93. Weniger MA, Rizzatti EG, Pérez-Galán P, Liu D, Wang Q, Munson PJ, Raghavachari N, White T, Tweito MM, Dunleavy K, Ye Y, Wilson WH, Wiestner A (2011) Treatment-induced oxidative stress and cellular antioxidant capacity determine response to bortezomib in mantle cell lymphoma. Clin Cancer Res 17(15):5101–5112

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Meredith MJ, Cusick CL, Soltaninassab S, Sekhar KS, Lu S, Freeman ML (1998) Expression of Bcl-2 increases intracellular glutathione by inhibiting methionine-dependent GSH efflux. Biochem Biophys Res Commun 248(3):458–463

    PubMed  CAS  Google Scholar 

  95. Hockenbery DM, Oltvai ZN, Yin X-M, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75(2):241–251

    PubMed  CAS  Google Scholar 

  96. Mirkovic N, Voehringer DW, Story MD, McConkey DJ, McDonnell TJ, Meyn RE (1997) Resistance to radiation-induced apoptosis in Bcl-2-expressing cells is reversed by depleting cellular thiols. Oncogene 15(12):1461–1470

    PubMed  CAS  Google Scholar 

  97. Bianchi G, Oliva L, Cascio P, Pengo N, Fontana F, Cerruti F, Orsi A, Pasqualetto E, Mezghrani A, Calbi V, Palladini G, Giuliani N, Anderson KC, Sitia R, Cenci S (2009) The proteasome load versus capacity balance determines apoptotic sensitivity of multiple myeloma cells to proteasome inhibition. Blood 113(13):3040–3049

    PubMed  CAS  Google Scholar 

  98. Mann BS, Johnson JR, He K, Sridhara R, Abraham S, Booth BP, Verbois L, Morse DE, Jee JM, Pope S, Harapanhalli RS, Dagher R, Farrell A, Justice R, Pazdur R (2007) Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clin Cancer Res 13(8):2318–2322

    PubMed  CAS  Google Scholar 

  99. Feng R, Oton A, Mapara MY, Anderson G, Belani C, Lentzsch S (2007) The histone deacetylase inhibitor, PXD101, potentiates bortezomib-induced anti-multiple myeloma effect by induction of oxidative stress and DNA damage. Br J Haematol 139(3):385–397

    PubMed  CAS  Google Scholar 

  100. Miller CP, Ban K, Dujka ME, McConkey DJ, Munsell M, Palladino M, Chandra J (2007) NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood 110(1):267–277

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Yu C (2003) The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl + cells sensitive and resistant to STI571. Blood 102(10):3765–3774

    PubMed  CAS  Google Scholar 

  102. Heider U, Metzler IV, Kaiser M, Rosche M, Sterz J, Rötzer S, Rademacher J, Jakob C, Fleissner C, Kuckelkorn U, Kloetzel P-M, Sezer O (2007) Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in mantle cell lymphoma. Eur J Haematol 80(2):133–142

    PubMed  Google Scholar 

  103. Campbell RA, Sanchez E, Steinberg J, Shalitin D, Li Z-W, Chen H, Berenson JR (2010) Vorinostat enhances the antimyeloma effects of melphalan and bortezomib. Eur J Haematol 84(3):201–211

    PubMed  CAS  Google Scholar 

  104. Badros A, Burger AM, Philip S, Niesvizky R, Kolla SS, Goloubeva O, Harris C, Zwiebel J, Wright JJ, Espinoza-Delgado I, Baer MR, Holleran JL, Egorin MJ, Grant S (2009) Phase I study of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Clin Cancer Res 15(16):5250–5257

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Maiso P, Carvajal-Vergara X, Ocio EM, López-Pérez R, Mateo G, Gutiérrez N, Atadja P, Pandiella A, San Miguel JF (2006) The histone deacetylase inhibitor LBH589 is a potent antimyeloma agent that overcomes drug resistance. Cancer Res 66(11):5781–5789

    PubMed  CAS  Google Scholar 

  106. Ocio EM, Vilanova D, Atadja P, Maiso P, Crusoe E, Fernandez-Lazaro D, Garayoa M, San-Segundo L, Hernandez-Iglesias T, de Alava E, Shao W, Yao YM, Pandiella A, San-Miguel JF (2010) In vitro and in vivo rationale for the triple combination of panobinostat (LBH589) and dexamethasone with either bortezomib or lenalidomide in multiple myeloma. Haematologica 95(5):794–803

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Yu C, Friday BB, Lai J-P, Yang L, Sarkaria J, Kay NE, Carter CA, Roberts LR, Kaufmann SH, Adjei AA (2006) Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther 5(9):2378–2387

    PubMed  CAS  Google Scholar 

  108. Chiou J-F, Tai C-J, Wang Y-H, Liu T-Z, Jen Y-M, Shiau C-Y (2009) Sorafenib induces preferential apoptotic killing of a drug- and radio-resistant Hep G2 cells through a mitochondria-dependent oxidative stress mechanism. Cancer Biol Ther 8(20):1904–1913

    PubMed  CAS  Google Scholar 

  109. Cardoso F, Durbecq V, Laes JF, Badran B, Lagneaux L, Bex F, Desmedt C, Willard-Gallo K, Ross JS, Burny A, Piccart M, Sotiriou C (2006) Bortezomib (PS-341, Velcade) increases the efficacy of trastuzumab (Herceptin) in HER-2-positive breast cancer cells in a synergistic manner. Mol Cancer Ther 5(12):3042–3051

    PubMed  CAS  Google Scholar 

  110. Gordon LI, Burke MA, Singh ATK, Prachand S, Lieberman ED, Sun L, Naik TJ, Prasad SVN, Ardehali H (2008) Blockade of the erbB2 receptor induces cardiomyocyte death through mitochondrial and reactive oxygen species-dependent pathways. J Biol Chem 284(4):2080–2087

    PubMed  Google Scholar 

  111. Avramis IA, Christodoulopoulos G, Suzuki A, Laug WE, Gonzalez-Gomez I, McNamara G, Sausville EA, Avramis VI (2002) In vitro and in vivo evaluations of the tyrosine kinase inhibitor NSC 680410 against human leukemia and glioblastoma cell lines. Cancer Chemother Pharmacol 50(6):479–489

    PubMed  CAS  Google Scholar 

  112. Chandra J (2003) Involvement of reactive oxygen species in adaphostin-induced cytotoxicity in human leukemia cells. Blood 102(13):4512–4519

    PubMed  CAS  Google Scholar 

  113. Dasmahapatra G (2006) The tyrphostin adaphostin interacts synergistically with proteasome inhibitors to induce apoptosis in human leukemia cells through a reactive oxygen species (ROS)-dependent mechanism. Blood 107(1):232–240

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Perrone G, Hideshima T, Ikeda H, Okawa Y, Calabrese E, Gorgun G, Santo L, Cirstea D, Raje N, Chauhan D (2009) Ascorbic acid inhibits antitumor activity of bortezomib in vivo. Leukemia 23(9):1679–1686

    PubMed  CAS  Google Scholar 

  115. Golden EB, Lam PY, Kardosh A, Gaffney KJ, Cadenas E, Louie SG, Petasis NA, Chen TC, Schonthal AH (2009) Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood 113(23):5927–5937

    PubMed  CAS  Google Scholar 

  116. Shah JJ, Kuhn DJ, Orlowski RZ (2009) Bortezomib and EGCG: no green tea for you? Blood 113(23):5695–5696

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Bannerman B, Xu L, Jones M, Tsu C, Yu J, Hales P, Monbaliu J, Fleming P, Dick L, Manfredi M, Claiborne C, Bolen J, Kupperman E, Berger A (2011) Preclinical evaluation of the antitumor activity of bortezomib in combination with vitamin C or with epigallocatechin gallate, a component of green tea. Cancer Chemother Pharmacol 68(5):1145–1154

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Shen M, Chan TH, Dou QP (2012) Targeting tumor ubiquitin-proteasome pathway with polyphenols for chemosensitization. Anticancer Agents Med Chem 12(8):891–901

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Engel RH, Brown JA, Von Roenn JH, O’Regan RM, Bergan R, Badve S, Rademaker A, Gradishar WJ (2007) A phase II study of single agent bortezomib in patients with metastatic breast cancer: a single institution experience. Cancer Invest 25(8):733–737

    PubMed  CAS  Google Scholar 

  120. Shah MH, Young D, Kindler HL, Webb I, Kleiber B, Wright J, Grever M (2004) Phase II study of the proteasome inhibitor bortezomib (PS-341) in patients with metastatic neuroendocrine tumors. Clin Cancer Res 10(18):6111–6118

    PubMed  CAS  Google Scholar 

  121. Kondagunta GV, Drucker B, Schwartz L, Bacik J, Marion S, Russo P, Mazumdar M, Motzer RJ (2004) Phase II trial of bortezomib for patients with advanced renal cell carcinoma. J Clin Oncol 22(18):3720–3725

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joya Chandra Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manton, C., Chandra, J. (2014). Oxidative Stress and the Proteasome: Mechanisms and Therapeutic Relevance. In: Dou, Q. (eds) Resistance to Proteasome Inhibitors in Cancer. Resistance to Targeted Anti-Cancer Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-06752-0_10

Download citation

Publish with us

Policies and ethics