Skip to main content

Transport of Monoterpenoid Indole Alkaloids in Catharanthus roseus

  • Chapter
  • First Online:
Plant ABC Transporters

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 22))

Abstract

Alkaloids are a large and diverse group of natural compounds that are related by the occurrence of a nitrogen atom within a heterocyclic backbone. Due to their strong and divergent biological activities, some of them are applied for clinical uses. Alkaloids are often highly accumulated in particular sites in plants and are often translocated from source tissue/organ to “sink” tissue/organ. Accordingly the complex development-, environment-, organ-, and cell-specific expression of pathway genes include the trafficking of biosynthetic intermediates between different organelles and also their movement between different cell types. Recently the involvement of ABC transporters in alkaloid translocation has been documented thus beginning an interesting new phase in the description of the biochemical components that are required for alkaloid biosynthesis. The identification of these alkaloid transporters is helping to better understand how intra- and inter-cellular compartmentation play important roles in the production/accumulation of alkaloids and supplies new approaches for engineering alkaloid production by manipulating pathway intermediate transport. As an important medicinal plant, Catharanthus roseus remains the only source of the anticancer drugs vinblastine and vincristine where it accumulates at very low levels, even if their catharanthine- and vindoline-building blocks are much more abundant. The in planta biosynthesis of these compounds is very complex involving several different organelles and cell types. Recently, a new ATP-binding cassette (ABC) transporter, CrTPT2, has been identified that controls catharanthine secretion to leaf surface from leaf epidermis where catharanthine biosynthesis occurs. In this review, we discuss intra- and intercellular compartmentation of the monoterpenoid indole alkaloid (MIA) pathway in Catharanthus roseus and TPT2 transporter families possibly involved in MIA secretion in all MIA active plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asada K, Salim V, Masada-Atsumi S, Edmunds E, Nagatoshi M, Terasaka K, Mizukami H, De Luca V (2013) A 7-Deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in Madagascar Periwinkle. Plant Cell Online 25(10):4123–4134

    Article  CAS  Google Scholar 

  • Bessire M, Borel S, Fabre G, Carraça L, Efremova N, Yephremov A, Cao Y, Jetter R, Jacquat A-C, Métraux J-P (2011) A member of the PLEIOTROPIC DRUG RESISTANCE family of ATP binding cassette transporters is required for the formation of a functional cuticle in Arabidopsis. Plant Cell Online 23(5):1958–1970

    Article  CAS  Google Scholar 

  • Bird DA, Franceschi VR, Facchini PJ (2003) A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell Online 15(11):2626–2635

    Article  CAS  Google Scholar 

  • Blom T, Sierra M, Van Vliet T, Franke-van Dijk M, De Koning P, Van Iren F, Verpoorte R, Libbenga K (1991) Uptake and accumulation of ajmalicine into isolated vacuoles of cultured cells of Catharanthus roseus (L.) G. Don. and its conversion into serpentine. Planta 183(2):170–177

    Article  CAS  PubMed  Google Scholar 

  • Brodelius P, Pedersen H (1993) Increasing secondary metabolite production in plant-cell culture by redirecting transport. Trends Biotechnol 11(1):30–36

    Article  CAS  PubMed  Google Scholar 

  • Burlat V, Oudin A, Courtois M, Rideau M, St‐Pierre B (2004) Co‐expression of three MEP pathway genes and geraniol 10‐hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid‐derived primary metabolites. Plant J 38(1):131–141

    Article  CAS  PubMed  Google Scholar 

  • Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31:461–477

    Article  CAS  PubMed  Google Scholar 

  • Carqueijeiro I, Noronha H, Duarte P, Gerôs HV, Sottomayor M (2013) Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton driven antiport. Plant Physiol 162:1486–1496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen G, Komatsuda T, Ma JF, Nawrath C, Pourkheirandish M, Tagiri A, Hu Y-G, Sameri M, Li X, Zhao X (2011) An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. Proc Natl Acad Sci 108(30):12354–12359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Contin A, van der Heijden R, Lefeber AW, Verpoorte R (1998) The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett 434(3):413–416

    Article  CAS  PubMed  Google Scholar 

  • Creasey WA (1994) Pharmacology, biochemistry, and clinical applications of the monoterpenoid alkaloids. Chem Heterocyclic Comp: Indoles, Part Four, The Monoterpenoid Indole Alkaloids 25:783–829

    Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Biochemistry and molecular biology of plants. pp 1250–1318

    Google Scholar 

  • Crouzet J, Trombik T, Fraysse ÅS, Boutry M (2006) Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Lett 580(4):1123–1130

    Article  CAS  PubMed  Google Scholar 

  • De Carolis E, Chan F, Balsevich J, De Luca V (1990) Isolation and characterization of a 2-oxoglutarate dependent dioxygenase involved in the second-to-last step in vindoline biosynthesis. Plant Physiol 94(3):1323–1329

    Article  PubMed Central  PubMed  Google Scholar 

  • De Luca V, Salim V, Thamm A, Atsumi-Masada S, Yu F (2014) Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. Curr Opin Plant Biol 19:35–42

    Article  PubMed  Google Scholar 

  • De Luca V, Salim V, Atsumi SM, Yu F (2012) Mining the biodiversity of plants: a revolution in the making. Science 336(6089):1658–1661

    Article  PubMed  Google Scholar 

  • De Luca V, Laflamme P (2001) The expanding universe of alkaloid biosynthesis. Curr Opin Plant Biol 4(3):225–233

    Article  PubMed  Google Scholar 

  • De Luca V, Cutler AJ (1987) Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 85(4):1099–1102

    Article  PubMed Central  PubMed  Google Scholar 

  • De Luca V, Balsevich J, Tyler R, Eilert U, Panchuk B, Kurz W (1986) Biosynthesis of indole alkaloids: developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus. J Plant Physiol 125(1):147–156

    Google Scholar 

  • Deus-Neumann B, Zenk M (1984) A highly selective alkaloid uptake system in vacuoles of higher plants. Planta 162(3):250–260

    Article  CAS  PubMed  Google Scholar 

  • Deus-Neumann B, Zenk M (1986) Accumulation of alkaloids in plant vacuoles does not involve an ion-trap mechanism. Planta 167(1):44–53

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6(2–3):277–305

    Article  CAS  Google Scholar 

  • Facchini PJ, De Luca V (2008) Opium poppy and Madagascar periwinkle: model non‐model systems to investigate alkaloid biosynthesis in plants. Plant J 54(4):763–784

    Article  CAS  PubMed  Google Scholar 

  • Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page JE, Ro DK, Sensen CW, Storms R, Martin VJ (2012) Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol 30:127–131

    Article  CAS  PubMed  Google Scholar 

  • Fester K (2010) Plant alkaloids. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0001914.pub2

  • Garcia O, Bouige P, Forestier C, Dassa E (2004) Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems. J Mol Biol 343(1):249–265

    Article  CAS  PubMed  Google Scholar 

  • Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, O’Connor SE (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492(7427):138–142

    Article  CAS  PubMed  Google Scholar 

  • Góngora-Castillo E, Childs KL, Fedewa G, Hamilton JP, Liscombe DK, Magallanes-Lundback M, Mandadi KK, Nims E, Runguphan W, Vaillancourt B, Varbanova-Herde M, Dellapenna D, McKnight TD, O’Connor S, Buell CR (2012a) Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species. PLoS One 7:e52506

    Article  PubMed Central  PubMed  Google Scholar 

  • Góngora-Castillo E, Fedewa G, Yeo Y, Chappell J, DellaPenna D, Buell CR (2012b) Genomic approaches for interrogating the biochemistry of medicinal plant species. Methods Enzymol 517:139–159

    Article  PubMed Central  PubMed  Google Scholar 

  • Guirimand G, Guihur A, Ginis O, Poutrain P, Héricourt F, Oudin A, Lanoue A, St‐Pierre B, Burlat V, Courdavault V (2011a) The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans‐tonoplast translocations of intermediate metabolites. FEBS J 278(5):749–763

    Article  CAS  PubMed  Google Scholar 

  • Guirimand G, Guihur A, Poutrain P, Héricourt F, Mahroug S, St-Pierre B, Burlat V, Courdavault V (2011b) Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus. J Plant Physiol 168(6):549–557

    Article  CAS  PubMed  Google Scholar 

  • Guirimand G, Courdavault V, Lanoue A, Mahroug S, Guihur A, Blanc N, Giglioli G'h N, St-Pierre B, Burlat V (2010) Strictosidine activation in Apocynaceae: towards a “nuclear time bomb”? BMC Plant Biol 10:182

    PubMed Central  PubMed  Google Scholar 

  • Hartmann T (1999) Chemical ecology of pyrrolizidine alkaloids. Planta 207(4):483–495

    Article  CAS  Google Scholar 

  • Hashimoto T, Yamada Y (1994) Alkaloid biogenesis: molecular aspects. Ann Rev Plant Biol 45(1):257–285

    Article  CAS  Google Scholar 

  • Hashimoto T, Yamada Y (2003) New genes in alkaloid metabolism and transport. Curr Opin Biotechnol 14(2):163–168

    Article  CAS  PubMed  Google Scholar 

  • Irmler S, Schröder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schröder J (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 24(6):797–804

    Article  CAS  PubMed  Google Scholar 

  • Jasinski M, Ducos E, Martinoia E, Boutry M (2003) The ATP-binding cassette transporters: structure, function, and gene family comparison between rice and Arabidopsis. Plant Physiol 131(3):1169–1177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jasinski M, Stukkens Y, Degand H, Purnelle B, Marchand-Brynaert J, Boutry M (2001) A plant plasma membrane ATP binding cassette–type transporter is involved in antifungal terpenoid secretion. Plant Cell 13:1095–1107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kutchan TM (1993) Strictosidine: from alkaloid to enzyme to gene. Phytochemistry 32(3):493–506

    Article  CAS  PubMed  Google Scholar 

  • Kutchan TM (1995) Alkaloid biosynthesis-the basis for metabolic engineering of medicinal plants. Plant Cell 7:1059

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee E, Hagel J, Facchini P (2013) Role of the phloem in the biochemistry and ecophysiology of benzylisoquinoline alklaoid metabolism. Front Plant Sci 4(182):1–7

    Google Scholar 

  • Levac D, Murata J, Kim WS, De Luca V (2008) Application of carborundum abrasion for investigating the leaf epidermis: molecular cloning of Catharanthus roseus 16‐hydroxytabersonine‐16‐O‐methyltransferase. Plant J 53(2):225–236

    Article  CAS  PubMed  Google Scholar 

  • Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu Ü, Müller-Röber B, Schulz B (2002) Multifunctionality of plant ABC transporters–more than just detoxifiers. Planta 214(3):345–355

    Article  CAS  PubMed  Google Scholar 

  • McKnight T, Roessner C, Devagupta R, Scott A, Nessler C (1990) Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucleic Acids Res 18(16):4939–4939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McKnight TD, Bergey DR, Burnett RJ, Nessler CL (1991) Expression of enzymatically active and correctly targeted strictosidine synthase in transgenic tobacco plants. Planta 185(2):148–152

    Article  CAS  PubMed  Google Scholar 

  • Moreno PR, van der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus: a literature survey. Plant Cell Tissue Organ Cult 42(1):1–25

    Article  Google Scholar 

  • Murata J, De Luca V (2005) Localization of tabersonine 16‐hydroxylase and 16-hydroxy- tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant J 44(4):581–594

    Article  CAS  PubMed  Google Scholar 

  • Murata J, Roepke J, Gordon H, De Luca V (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell Online 20(3):524–542

    Article  CAS  Google Scholar 

  • Noble RL (1990) The discovery of the vinca alkaloids-chemotherapeutic agents against cancer. Biochem Cell Biol 68(12):1344–1351

    Article  CAS  PubMed  Google Scholar 

  • O’Connor SE, Maresh JJ (2006) Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod Rep 23(4):532–547

    Article  PubMed  Google Scholar 

  • Oudin A, Courtois M, Rideau M, Clastre M (2007) The iridoid pathway in Catharanthus roseus alkaloid biosynthesis. Phytochem Rev 6(2–3):259–276

    Article  CAS  Google Scholar 

  • Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375

    Article  CAS  PubMed  Google Scholar 

  • Roepke J, Salim V, Wu M, Thamm AM, Murata J, Ploss K, Boland W, De Luca V (2010) Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proc Natl Acad Sci 107(34):15287–15292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers B, Decottignies A, Kolaczkowski M, Carvajal E, Balzi E, Goffeau A (2001) The pleitropic drug ABC transporters from Saccharomyces cerevisiae. J Mol Microbiol Biotechnol 3(2):207–214

    CAS  PubMed  Google Scholar 

  • Salim V, Wiens B, Masada-Atsumi S, Yu F, De Luca V (2014) 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis. Phytochemistry 101:23–31

    Article  CAS  PubMed  Google Scholar 

  • Salim V, De Luca V (2013) Towards complete elucidation of monoterpene indole alkaloid biosynthesis pathway: Catharanthus roseus as a pioneer system. Adv Bot Res 68:1–37

    Article  CAS  Google Scholar 

  • Salim V, Yu F, Altarejos J, Luca V (2013) Virus‐induced gene silencing identifies Catharanthus roseus 7‐deoxyloganic acid‐7‐hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. Plant J 76(5):754–765

    Article  CAS  PubMed  Google Scholar 

  • Samanani N, Park S-U, Facchini PJ (2005) Cell type–specific localization of transcripts encoding nine consecutive enzymes involved in protoberberine alkaloid biosynthesis. Plant Cell Online 17(3):915–926

    Article  CAS  Google Scholar 

  • Saxton JE (1997) Recent progress in the chemistry of the monoterpenoid indole alkaloids. Nat Prod Rep 14(6):559–590

    Article  CAS  Google Scholar 

  • Shen Z, Eisenreich W, Kutchan TM (1998) Bacterial biotransformation of 3α(S)-Strictosidine to the monoterpenoid indole alkaloid vallesiachotamine. Phytochemistry 48(2):293–296

    Article  CAS  Google Scholar 

  • Shitan N, Bazin I, Dan K, Obata K, Kigawa K, Ueda K, Sato F, Forestier C, Yazaki K (2003) Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica. Proc Natl Acad Sci 100(2):751–756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shitan N, Yazaki K (2007) Accumulation and membrane transport of plant alkaloids. Curr Pharm Biotechnol 8(4):244–252

    Article  CAS  PubMed  Google Scholar 

  • Shoji T, Yamada Y, Hashimoto T (2000) Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol 41(7):831–839

    Article  CAS  PubMed  Google Scholar 

  • Smart CC, Fleming AJ (1996) Hormonal and environmental regulation of a plant PDR5-like ABC transporter. J Biol Chem 271(32):19351–19357

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre B, Vazquez-Flota FA, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell Online 11(5):887–900

    Article  CAS  Google Scholar 

  • St-Pierre B, Laflamme P, Alarco AM, Luca E (1998) The terminal O‐acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A‐dependent acyl transfer. Plant J 14(6):703–713

    Article  CAS  PubMed  Google Scholar 

  • Stevens LH, Blom TJ, Verpoorte R (1993) Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata. Plant Cell Rep 12(10):573–576

    Article  CAS  PubMed  Google Scholar 

  • Stöckigt J, Zenk MH (1977) Strictosidine (isovincoside): the key intermediate in the biosynthesis of monoterpenoid indole alkaloids. J Chem Soc, Chem Commun 18:646–648

    Article  Google Scholar 

  • Van Moerkercke A, Fabris M, Pollier J, Baart GJ, Rombauts S, Hasnain G, Rischer H, Memelink J, Oksman-Caldentey KM, Goossens A (2013) CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data. Plant Cell Physiol 54:673–685

    Article  PubMed  Google Scholar 

  • Van den Brûle S, Smart CC (2002) The plant PDR family of ABC transporters. Planta 216(1):95–106

    Article  PubMed  Google Scholar 

  • Verma P, Mathur AK, Srivastava A, Mathur A (2012) Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update. Protoplasma 249(2):255–268

    Article  CAS  PubMed  Google Scholar 

  • Wink M (1993) The plant vacuole: a multifunctional compartment. J Exp Bot 44:231–231

    CAS  Google Scholar 

  • Wink M, Roberts MF (1998) Compartmentation of alkaloid synthesis, transport, and storage. In: Alkaloids. Springer, Heidelberg, pp 239–262

    Google Scholar 

  • Xiao M, Zhang Y, Chen X, Lee EJ, Barber CJ, Chakrabarty R, Desgagné-Penix I, Haslam TM, Kim YB, Liu E, MacNevin G, Masada-Atsumi S, Reed D, Stout JM, Zerbe P, Zhang Y, Bohlmann J, Covello PS, De Luca V, Page JE, Ro DK, Martin VJJ, Facchini PJ, Sensen CW (2013) Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 166:122–134

    Article  CAS  PubMed  Google Scholar 

  • Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580(4):1183–1191

    Article  CAS  PubMed  Google Scholar 

  • Yu F, De Luca V (2013) ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc Natl Acad Sci 110(39):15830–15835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zenk M, El-Shagi H, Arens H, Stöckigt J, Weiler E, Deus B (1977) Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus. In: Plant tissue culture and its bio-technological application. Springer, pp 27–43

    Google Scholar 

  • Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the funding support by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (to V.D.L.), an NSERC/Binational Agricultural Research and Development Fund/Agriculture Canada team grant, Canada Research Chairs (V.D.L.), Genome Canada, Genome Alberta, Genome Prairie, Genome British Columbia, the Canada Foundation for Innovation, the Ontario Ministry of Research and Innovation, the National Research Council of Canada, and other government and private-sector partners.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Yu or Vincenzo De Luca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yu, F., De Luca, V. (2014). Transport of Monoterpenoid Indole Alkaloids in Catharanthus roseus . In: Geisler, M. (eds) Plant ABC Transporters. Signaling and Communication in Plants, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-06511-3_5

Download citation

Publish with us

Policies and ethics