Skip to main content

Partial Regularity Results in Optimal Transportation

  • Conference paper
  • First Online:
Trends in Contemporary Mathematics

Part of the book series: Springer INdAM Series ((SINDAMS,volume 8))

Abstract

This note describes some recent results on the regularity of optimal transport maps. As we shall see, in general optimal maps are not globally smooth, but they are so outside a “singular set” of measure zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here and in the sequel, | E | denotes the Lebesgue measure of a set E.

  2. 2.

    By an example of Pogorelov this turns out to be a necessary condition, see for instance [24, Section 4.1.3].

  3. 3.

    Actually, in [12, 14] the regular set is defined in a slightly different way and it is in principle smaller. However, the advantage of that definition is that it allows for a more refined analysis of the singular set (see [12]).

  4. 4.

    Although we did not state them here, many existence and uniqueness result for optimal transport maps on Riemannian manifolds are known (see for instance [11]), and they include for instance the case \(c(x,y) = d(x,y)^{2}/2\).

References

  1. A.D. Alexandrov, Existence and uniqueness of a convex surface with a given integral curvature. C. R. (Doklady) Acad. Sci. URSS (N. S.) 35, 131–134 (1942)

    Google Scholar 

  2. Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs (French). C. R. Acad. Sci. Paris Sér. I Math. 305(19), 805–808 (1987)

    MATH  MathSciNet  Google Scholar 

  3. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. L.A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity. Ann. Math. (2) 131(1), 129–134 (1990)

    Google Scholar 

  5. L.A. Caffarelli, Some regularity properties of solutions of Monge-Ampère equation. Commun. Pure Appl. Math. 44(8–9), 965–969 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. L.A. Caffarelli, The regularity of mappings with a convex potential. J. Am. Math. Soc. 5(1), 99–104 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. L.A. Caffarelli, Boundary regularity of maps with convex potentials. II. Ann. Math. (2) 144(3), 453–496 (1996)

    Google Scholar 

  8. J.A. Cuesta-Albertos, C. Matrán, Notes on the Wasserstein metric in Hilbert spaces. Ann. Probab. 17(3), 1264–1276 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. G. De Philippis, A. Figalli, Partial regularity for optimal transport maps (2012, preprint)

    Google Scholar 

  10. G. De Philippis, A. Figalli, The Monge-Ampère equation and its link to optimal transportation. Bull. Amer. Math. Soc. (to appear)

    Google Scholar 

  11. A. Fathi, A. Figalli, Optimal transportation on non-compact manifolds. Isr. J. Math. 175, 1–59 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Figalli, Regularity properties of optimal maps between nonconvex domains in the plane. Commun. Partial Differ. Equ. 35(3), 465–479 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Figalli, Regularity of optimal transport maps [after Ma-Trudinger-Wang and Loeper]. Séminaire Bourbaki. Vol. 2008/2009. Exposés 997–1011. Astérisque 332, Exp. No. 1009 (2010)

    Google Scholar 

  14. A. Figalli, Y.-H. Kim, Partial regularity of Brenier solutions of the Monge-Ampère equation. Discret. Contin. Dyn. Syst. 28(2), 559–565 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Figalli, L. Rifford, C. Villani, Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds. Tohoku Math. J. (2) 63(4), 855–876 (2011)

    Google Scholar 

  16. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, New York, 1983)

    Book  MATH  Google Scholar 

  17. G. Loeper, On the regularity of solutions of optimal transportation problems. Acta Math. 202(2), 241–283 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. X.-N. Ma, N.S. Trudinger, X.-J. Wang, Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177(2), 151–183 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. G. Monge, Mémoire sur la Théorie des Déblais et des Remblais. Hist. de l’Acad. des Sciences de Paris 666–704 (1781)

    Google Scholar 

  20. S.T. Rachev, L. Rüshendorf, Mass Transportation Problems. Vol I: Theory, Vol II: Applications. Probability and Its Applications (Springer, New York, 1998)

    Google Scholar 

  21. N.S. Trudinger, A note on global regularity in optimal transportation. Bull. Math. Sci. 3, 551–557 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. N.S. Trudinger, X.-J. Wang, On the second boundary value problem for Monge-Ampère type equations and optimal transportation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8(1), 143–174 (2009)

    Google Scholar 

  23. N.S. Trudinger, X.-J. Wang, On strict convexity and continuous differentiability of potential functions in optimal transportation. Arch. Ration. Mech. Anal. 192(3), 403–418 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. C. Villani, Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58 (American Mathematical Society, Providence, 2003)

    Google Scholar 

  25. C. Villani, Optimal Transport, Old and New. Grundlehren des mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338 (Springer, Berlin/New York, 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. De Philippis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

De Philippis, G., Figalli, A. (2014). Partial Regularity Results in Optimal Transportation. In: Ancona, V., Strickland, E. (eds) Trends in Contemporary Mathematics. Springer INdAM Series, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-05254-0_21

Download citation

Publish with us

Policies and ethics