Skip to main content

Nuclear Oncology

  • Chapter
  • First Online:
Synopsis of Pathophysiology in Nuclear Medicine
  • 905 Accesses

Abstract

The classification and typing of tumors depend mainly on the histopathological diagnosis, which is made on the basis of gross and microscopic examination of tissues. Tumor classification is based on histogenesis, degree of cellular differentiation (i.e., well or poorly differentiated), and biological behavior (benign vs. malignant).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar V, Cotran RS, Robbins SL (2010) Basic pathology, 8th edn. Saunders, Philadelphia

    Google Scholar 

  2. Devita VT, Hellman S, Rosenberg SA (2011) Cancer: principles and practice of oncology, 9th edn. Lippincott, Philadelphia

    Google Scholar 

  3. Holland JF, Bast RC, Morton DL, Frei E III, Kufe DW, Weichselbaum RR (2009) Cancer medicine, 6th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  4. Collan Y (1989) General principles of grading lesions in diagnostic histopathology. Pathol Res Pract 185:539–543

    Article  CAS  PubMed  Google Scholar 

  5. Herberman RB, Ortaldo JR (1981) Natural killer cells: their roles in defenses against disease. Science 2:24–30

    Article  Google Scholar 

  6. Heichman KA, Roberts JM (1994) Rules to replicate by. Cell 79:557–562

    Article  CAS  PubMed  Google Scholar 

  7. Foulds L (1969) Neoplastic development, vol 2. Academic, London

    Google Scholar 

  8. Abercrombie M, Heaysman JE (1954) Observations on the social behaviour of cells in tissue culture. II. Monolayering of fibroblasts. Exp Cell Res 6:293–306

    Article  CAS  PubMed  Google Scholar 

  9. Todaro GJ, Green H (1963) Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 17:299–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Sporn MB, Todaro GJ (1980) Autocrine secretion and malignant transformation of cells. N Engl J Med 303:878–880

    Article  CAS  PubMed  Google Scholar 

  11. Warburg OH (1930) The metabolism of tumors: investigations from the Kaiser Wilhelm Institute for Biology Constable. Constable, London

    Google Scholar 

  12. Yokota J (2000) Tumor progression and metastasis. Carcinogenesis 3:497–503

    Article  Google Scholar 

  13. Recklies AD, Tiltman KJ, Stoker TA, Poole AR (1980) Secretion of proteinases from malignant and nonmalignant human breast tissue. Cancer Res 40:550–556

    CAS  PubMed  Google Scholar 

  14. Gunthert U, Hofmann M, Rudy W, Reber S, Zoller M, Haussmann I, Matzku S, Wenzel A, Ponta H, Herrlich P (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinomacells. Cell 65:13–24

    Article  CAS  PubMed  Google Scholar 

  15. Knutsen T (1998) Cytogenetic changes in the progression of lymphoma. Leuk Lymphoma 31:1–19

    Article  CAS  PubMed  Google Scholar 

  16. Faderl S, Talpaz M, Estrov Z, Kantarjian HM (1999) Chronic myelogenous leukemia: biology and therapy. Ann Intern Med 131:207–219

    Article  CAS  PubMed  Google Scholar 

  17. Underwood JCE (2000) General and systemic pathology, 3rd edn. Churchill Livingstone, London

    Google Scholar 

  18. Stevens ALJ (2000) Pathology, 2nd edn. Mosby, London

    Google Scholar 

  19. Eisenhauer EA (2001) From the molecule to the clinic–inhibiting HER2 to treat breast cancer. N Engl J Med 344:841–842

    Article  CAS  PubMed  Google Scholar 

  20. Harari D, Yarden Y (2001) Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19:6102–6114

    Article  Google Scholar 

  21. Kirsch DG, Kastan MB (1998) Tumor-suppressor p53: implications for tumor development and prognosis. J Clin Oncol 16:3158–3168

    CAS  PubMed  Google Scholar 

  22. Liggett WH Jr, Sidransky D (1998) Role of the p16 tumor suppressor gene in cancer. J Clin Oncol 16:1197–1206

    CAS  PubMed  Google Scholar 

  23. Fearnhead NS, Britton MP, Bodmer WF (2001) The ABC of APC. Hum Mol Genet 10:721–733

    Article  CAS  PubMed  Google Scholar 

  24. Reed JC (1999) Dysregulation of apoptosis in cancer. J Clin Oncol 17:2941–2953

    CAS  PubMed  Google Scholar 

  25. Eichhorst ST, Krammer PH (2001) Derangement of apoptosis in cancer. Lancet 4:345–346

    Article  Google Scholar 

  26. Blackwood MA, Weber BL (1998) BRCA1 and BRCA2: from molecular genetics to clinical medicine. J Clin Oncol 16:1969–1977

    CAS  PubMed  Google Scholar 

  27. Larson SM, Rasey JS, Allen DR, Nelson NJ (1979) A transferrin-mediated uptake of gallium-67 by EMT-6 sarcoma. I. Studies in tissue culture. J Nucl Med 20:837–842

    CAS  PubMed  Google Scholar 

  28. Berry JP, Escaig F, Poupon MF, Galle P (1983) Localization of gallium in tumor cells. Electron microscopy, electron probe microanalysis and analytical ion microscopy. Int J Nucl Med Biol 10:199–204

    Article  CAS  PubMed  Google Scholar 

  29. Britten JS, Blank M (1968) Thallium-201 chloride-201 chloride activation of the (Na + K +) activated ATPase of rabbit kidney. Biochim Biophys Acta 159:160–166

    Article  CAS  PubMed  Google Scholar 

  30. Sessler MJ, Geck P, Maul FD, Hor G, Munz DL (1986) New aspects of cellular thallium-201 chloride uptake: Tl+-Na+-2Cl-cotransport is the central mechanism of ion uptake. Nucl Med 23:24–27

    Google Scholar 

  31. Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA, Croop JM (1993) Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res 53:977–984

    CAS  PubMed  Google Scholar 

  32. Ballinger JR, Sheldon KM, Boxen I, Erlichman C, Ling V (1995) Differences between accumulation of 99mTc-MIBI and 201Tl-thallous chloride in tumour cells: role of P-glycoprotein. Q J Nucl Med 39:122–128

    CAS  PubMed  Google Scholar 

  33. Pauwels EK, Sturm EJ, Bombardieri E, Cleton FJ, Stokkel MP (2000) Positron-emission tomography with [18F] fluorodeoxyglucose. Part 1. Biochemical uptake mechanism and its implication for clinical studies. J Cancer Res Clin Oncol 126:549–559

    Article  CAS  PubMed  Google Scholar 

  34. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43:1210–1217

    CAS  PubMed  Google Scholar 

  35. Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, Mattfeldt T et al (2003) Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 44:1426–1431

    CAS  PubMed  Google Scholar 

  36. Cobben DC, Jager PL, Elsinga PH, Maas B, Suurmeijer AJ, Hoekstra HJ (2003) 3′-(18)F-fluoro-3′-deoxy-L-thymidine: a new tracer for staging metastatic melanoma? J Nucl Med 44:1927–1932

    CAS  PubMed  Google Scholar 

  37. Everitt S, Hicks RJ, Ball D, Kron T, Schneider-Kolsky M, Walter T, Binns D, Mac Manus M (2009) Imaging cellular proliferation during chemo-radiotherapy: a pilot study of serial 18F-FLT positron emission tomography/computed tomography imaging for non–small-cell lung cancer. Int J Radiat Oncol Biol Phys 75:1098–1104

    Article  PubMed  Google Scholar 

  38. Minamimoto R, Toyohara J, Seike A, Ito H, Endo H, Morooka M, Nakajima K, Mitsumoto T, Ito K, Okasaki M, Ishiwata K, Kubota K (2012) 4′-[Methyl-11C]-thiothymidine PET/CT for proliferation imaging in non-small cell lung cancer. J Nucl Med 53:199–206

    Article  CAS  PubMed  Google Scholar 

  39. Hara T, Inagaki K, Kosaka N, Morita T (2000) Sensitive detection of mediastinal lymph node metastasis of lung cancer with 11C-choline PET. J Nucl Med 41:1507–1513

    CAS  PubMed  Google Scholar 

  40. Torizuka T, Kanno T, Futatsubashi M, Okada H, Yoshikawa E, Nakamura F, Takekuma M, Maeda M, Ouchi Y (2003) Imaging gynecologic tumors: comparison of 11C-choline PET with 18F-FDG PET. J Nucl Med 44:1051–1056

    CAS  PubMed  Google Scholar 

  41. Pieterman RM, Que TH, Elsinga PH, Pruim J, van Putten JW, Willemsen AT, Vaalburg W, Groen HJ (2002) Comparison of (11)C-choline and (18)F-FDG PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med 43:167–172

    PubMed  Google Scholar 

  42. Bradley JD, Perez CA, Dehdashti F, Siegel BA (2004) Implementing biologic target volumes in radiation treatment planning for non-small cell lung cancer. J Nucl Med 45(Suppl 1):96S–101S

    PubMed  Google Scholar 

  43. Huang T, Civelek A, Zheng H et al (2013) F-18 misonidazole PET imaging of hypoxia in micrometastases and macroscopic xenografts of human non-small cell lung cancer: a correlation with autoradiography and histopathological findings. Am J Nucl Med Mol Biol 3:142–153

    CAS  Google Scholar 

  44. Richin D, Hicks RJ, Fisher R et al (2006) Prognostic significance of F-18 misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned chemo-radiation with or without tirapazamine: a substudy of trans-tasman radiation oncology group 98.2. J Clin Oncol 24:2098–2104

    Article  Google Scholar 

  45. Cai W, Rao J, Gambhir SS, Chen X (2006) How molecular imaging is speeding up antiangiogenic drug development. Mol Cancer Ther 5:2624–2633

    Article  CAS  PubMed  Google Scholar 

  46. Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, Kessler H, Schwaiger M (2001) Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 42:326–336

    CAS  PubMed  Google Scholar 

  47. Blankenberg FG, Strauss HW (2001) Will imaging of apoptosis play a role in clinical care? A tale of mice and men. Apoptosis 6:117–123

    Article  CAS  PubMed  Google Scholar 

  48. Herschman HR (2004) PET reporter genes for noninvasive imaging of gene therapy, cell tracking and transgenic analysis. Crit Rev Oncol Hematol 51:191–204

    Article  PubMed  Google Scholar 

  49. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    Article  CAS  PubMed  Google Scholar 

  50. Lowe VJ, Naunheim KS (1998) Current role of positron emission tomography in thoracic oncology. Thorax 53:703–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Marom EM, Sarvis S, Herndon JE 2nd, Patz EF Jr et al (2002) T1 lung cancers: sensitivity of diagnosis with fluorodeoxyglucose PET. Radiology 223:453–459

    Article  PubMed  Google Scholar 

  52. Schoder H, Larson SM, Yeung HW (2004) PET/CT in oncology: integration into clinical management of lymphoma, melanoma, and gastrointestinal malignancies. J Nucl Med 45:72S–81S

    PubMed  Google Scholar 

  53. Bury T, Corhay JL, Duysinx B, Daenen F, Ghaye B, Barthelemy N, Rigo P, Bartsch P (1999) Value of FDG-PET in detecting residual or recurrent nonsmall cell lung cancer. Eur Respir J 14:1376–1380

    Article  CAS  PubMed  Google Scholar 

  54. Magnani P, Carretta A, Rizzo G, Fazio F, Vanzulli A, Lucignani G, Zannini P, Messa C, Landoni C, Gilardi MC, Del Maschio A (1999) FDG/PET and spiral CT image fusion for mediastinal lymph node assessment of non-small cell lung cancer patients. J Cardiovasc Surg 40:741–748

    CAS  Google Scholar 

  55. Marom EM, McAdams HP, Erasmus JJ, Goodman PC, Culhane DK, Coleman RE, Herndon JE, Patz EF Jr (1999) Staging non-small cell lung cancer with whole-body PET. Radiology 212:803–809

    Article  CAS  PubMed  Google Scholar 

  56. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93S

    CAS  PubMed  Google Scholar 

  57. Patz EF (2000) Evaluation of focal pulmonary abnormalities with FDG PET. Radiographics 20:1182–1185

    Article  PubMed  Google Scholar 

  58. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, Pruim J et al (1999) Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 35:1773–1782

    Article  CAS  PubMed  Google Scholar 

  59. Rosen EL, Turkington TG, Soo MS, Baker JA, Coleman RE (2005) Detection of primary breast carcinoma with a dedicated, large field of view FDG PET mammography device: initial experience. Radiology 234:527–534

    Article  PubMed  Google Scholar 

  60. Hanson JA, Armstrong P (1997) Staging intrathoracic non-small-cell lung cancer. Eur Radiol 7:161–172

    Article  CAS  PubMed  Google Scholar 

  61. Moog F, Bangerter M, Diederichs CG, Guhlmann A, Merkle E, Frickhofen N, Reske SN (1998) Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology 206:475–481

    CAS  PubMed  Google Scholar 

  62. Steinert HC, Hauser M, Allemann F, Engel H, Berthold T, von Schulthess GK, Weder W (1997) Non-small cell lung cancer: nodal staging with FDG PET versus CT with correlative lymph node mapping and sampling. Radiology 202:441–446

    CAS  PubMed  Google Scholar 

  63. Bury T, Dowlati A, Paulus P, Corhay JL, Hustinx R, Ghaye B, Radermecker M et al (1997) Whole-body 18 FDG positron emission tomography in the staging of non-small lung cancer. Eur Respir J 10:2529–2534

    Article  CAS  PubMed  Google Scholar 

  64. Kubota K, Matsuzawa T, Amemiya A, Kondo M, Fujiwara T, Watanuki S, Ito M et al (1989) Imaging of breast cancer with (18F) fluorodeoxyglucose and positron emission tomography. J Comput Assist Tomogr 13:1097–1098

    CAS  PubMed  Google Scholar 

  65. Tse NY, Hoh CK, Hawkins RA, Zinner MJ, Dahlbom M, Choi Y, Maddahi J (1992) The application of positron emission tomographic imaging with fluorodeoxyglucose for the evaluation of breast disease. Ann Surg 216:27–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Vidal-Sicart S, Olmos RV (2012) Sentinel node mapping for breast cancer: current situation. J Oncol. Article ID 361341, 7 p. doi:10.1155/2012/361341.

  67. Barnwell JM, Arredondo MA, Kollmorgen D, Gibbs JF, Lamonica D, Carson W, Zhang P et al (1998) Sentinel node biopsy in breast cancer. Ann Surg Oncol 5:126–130

    Article  CAS  PubMed  Google Scholar 

  68. Kogel KE, Sweetenham JW (2003) Current therapies in Hodgkin’s disease. Eur J Nucl Med Mol Imaging 30(Suppl 1):S19–S27

    Article  PubMed  Google Scholar 

  69. Okada J, Oonishi H, Yoshikawa K, Itami J, Uno K, Imaseki K, Arimizu N (1994) FDG-PET for predicting the prognosis of malignant lymphoma. Ann Nucl Med 8:187–191

    Article  CAS  PubMed  Google Scholar 

  70. Kunkel M, Forster GJ, Reichert TE, Jeong JH, Benz P, Bartenstein P, Wagner W et al (2003) Detection of recurrent oral squamous cell carcinoma by [18F]-2-fluorodeoxyglucose-positron emission tomography: implications for prognosis and patient management. Cancer 98:2257–2265

    Article  PubMed  Google Scholar 

  71. Halfpenny W, Hain SF, Biassoni L, Maisey MN, Sherman JA, McGurk M (2002) FDG-PET. A possible prognostic factor in head and neck cancer. Br J Cancer 86:512–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Brun E, Ohlsson T, Erlandsson K, Kjellen E, Sandell A, Tennvall J, Wennerberg J et al (1997) Early prediction of treatment outcome in head and neck cancer with 2-18FDG PET. Acta Oncol 36:741–747

    Article  CAS  PubMed  Google Scholar 

  73. Kitagawa Y, Sano K, Nishizawa S, Nakamura M, Ogasawara T, Sadato N, Yonekura Y (2003) FDG-PET for prediction of tumour aggressiveness and response to intra-arterial chemotherapy and radiotherapy in head and neck cancer. Eur J Nucl Med Mol Imaging 30:63–71

    Article  CAS  PubMed  Google Scholar 

  74. Minn H, Lapela M, Klemi PJ, Grenman R, Leskinen S, Lindholm P, Bergman J et al (1997) Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancer. J Nucl Med 38:1907–1911

    CAS  PubMed  Google Scholar 

  75. Cheng J et al (2013) 18F-fluoromisonidazole PET/CT: a potential tool for predicting primary endocrine therapy resistance in breast cancer. J Nucl Med 54:333–340

    Article  CAS  PubMed  Google Scholar 

  76. Ullah MF (2008) Cancer Multidrug Resistance (MDR): a major impediment to effective chemotherapy. Asian Pac J Cancer Prev 9:1–6

    PubMed  Google Scholar 

  77. Kostakoglu L, Goldsmith SJ (2003) 18F-FDG PET evaluation of the response to therapy for lymphoma and for breast, lung, and colorectal carcinoma. J Nucl Med 44:224–239

    PubMed  Google Scholar 

  78. Luker GD, Luker KE, Sharma V et al (1999) Assessment of multidrug resistance. Nuclear oncology. Springer, Berlin/Heidelberg/New York, pp 371–382

    Book  Google Scholar 

  79. Kao CH, Hsieh JF, Tsai SC, Ho YJ, Changlai SP, Lee JK (2001) Paclitaxel-based chemotherapy for non-small cell lung cancer: predicting the response with 99mTc-tetrofosmin chest imaging. J Nucl Med 42:17–20

    CAS  PubMed  Google Scholar 

  80. Wallner KE, Galieich JH, Malkin MG, Arbit E, Krol G, Rosenblum MK (1989) Inability of computed tomography appearance of recurrent malignant astrocytoma to predict survival following reoperation. J Clin Oncol 7:1492–1496

    CAS  PubMed  Google Scholar 

  81. Abdel-Dayem HM, Scott AM, Macapinlac HA, El-Gazzar AH, Larson SM (1994) Role of thallim-201 chloride in tumor imaging. In: Freeman LM (ed) Nuclear medicine annual. Raven, New York, pp 181–234

    Google Scholar 

  82. Ganz WI, Nguyen TW, Benedetto MP, Friden A, Topchik S, Serafini A, Sfakianakis G (1993) Use of early, late and SPECT thallium-201 chloride-201 chloride imaging in evaluating activity of soft tissue and bone tumors (abstract). J Nucl Med 34:32P

    Google Scholar 

  83. Jana S, Mahadeo S, Heller S, Isasi CR, Blaufox MD (2005) Influence of PET scanners, lesion size, and attenuation correction methods on SUV in FDG-PET imaging (Abstract). J Nucl Med 46:328

    Google Scholar 

  84. Schoder H, Erdi YE, Chao K, Gonen M, Larson SM, Yeung HW (2004) Clinical implications of different image reconstruction parameters for interpretation of whole-body PET studies in cancer patients. J Nucl Med 45:559–566

    PubMed  Google Scholar 

  85. Eisenhauer E, Therasse P, Bagaerts T et al (2009) New response evaluation criteria in solid tumors. Revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elgazzar, A.H. (2014). Nuclear Oncology. In: Synopsis of Pathophysiology in Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-03458-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03458-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03457-7

  • Online ISBN: 978-3-319-03458-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics