Skip to main content

The Neurobiology of a Transformation from Asocial to Social Life During Swarm Formation in Desert Locusts

  • Chapter
  • First Online:
New Frontiers in Social Neuroscience

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE,volume 21))

Abstract

Many species display complex social interactions and for such animals other members of their species can form a major or even dominant part of their environment. Social interactions between these animals can induce long-lasting changes in brain function and behaviour that in turn alter the ways in which they respond to each other. Locusts are insects that can change reversibly between an asocial solitarious phase and a social gregarious phase that is driven by changes in population density. Phase change encompasses both a socially driven mechanism and multifaceted changes in behaviour, physiology, neurochemistry, brain morphology and even appearance. At low densities, locusts occur in the solitarious phase. Their biology is governed by the need to be inconspicuous and they actively avoid other locusts, thus maintaining their low population density. When sheer population size and scarce resources force solitarious locusts together despite their aversion to each other, a transformation is triggered that results in the gregarious phase. The stimuli responsible for starting this transformation are provided by other locusts, notably mechanosensory stimulation resulting from inadvertent jostling of each other. After just a few hours these stimuli induce changes in behaviour, including, critically, a change toward a propensity to be attracted towards other locusts. This attraction initiates a positive feedback loop whereby the continual presence of other locusts provides the necessary stimuli to drive the process towards the extreme gregarious phenotype and eventually to swarming. The biology of gregarious locusts is then dominated by the demands of group living. There is intense competition for resources and considerably greater sensory complexity in the environment brought about by living in a constantly moving throng of other animals. These behavioural demands are reflected in the substantially larger brains of gregarious locusts compared with solitarious locusts. Phase differences can also be detected at the level of identified neurons and circuits and in dramatic changes in neurochemistry, but only serotonin shows a substantial increase during the critical 1–4 h window during which gregarious behaviour is established. Blocking the action of serotonin or preventing its synthesis prevents behavioural gregarization. Applying serotonin or its agonists induces gregarious behaviour even in locusts that have never encountered other locusts. The analysis of phase change in locusts provides insights into a feedback circuit between the environment and the neurobiology of social interaction. Remarkably, there is emerging evidence that the neuronal mechanisms underlying this transformation in locusts show similarities with those underlying social behaviours in other animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansorge MS, Hen R, Gingrich JA (2007) Neurodevelopmental origins of depressive disorders. Curr Opin Pharmacol 7:8–17

    Article  PubMed  CAS  Google Scholar 

  • Anstey ML, Rogers SM, Ott SR, Burrows M, Simpson SJ (2009) Serotonin mediates behavioural gregarization underlying swarm formation in desert locusts. Science 323:627–630

    Article  PubMed  CAS  Google Scholar 

  • Bacon J, Tyrer NM (1978) The tritocerebral giant (TCG): a bimodal interneurone in the locust, Schistocerca gregaria. J Comp Physiol A 126:317–325

    Article  Google Scholar 

  • Badisco L, Huybrechts J, Simonet G, Verlinden H, Marchal E, Huybrechts R, Schoofs L, De Loof A, Vanden Broeck J (2011a) Transcriptome analysis of the desert locust central nervous system: production and annotation of a Schistocerca gregaria EST database. PLoS One 6:e17274

    Article  PubMed  CAS  Google Scholar 

  • Badisco L, Ott SR, Rogers SM, Matheson T, Knapen D, Vergauwen L, Verlinden H, Marchal E, Sheehy MRJ, Burrows M, Vanden Broeck J (2011b) Microarray-based transcriptomic analysis of differences between long-term gregarious and solitarious desert locusts. PLoS One 6:e28110

    Article  PubMed  CAS  Google Scholar 

  • Ban L, Scaloni A, Brandazza A, Angeli S, Zhang L, Yan Y, Pelosi P (2003) Chemosensory proteins of Locusta migratoria. Insect Mol Biol 12:125–134

    Article  PubMed  CAS  Google Scholar 

  • Bazazi S, Buhl J, Hale JJ, Anstey ML, Sword GA, Simpson SJ, Couzin ID (2008) Collective motion and cannibalism in locust migratory bands. Curr Biol 18:735–739

    Article  PubMed  CAS  Google Scholar 

  • Bazazi S, Romanczuk P, Thomas S, Schimansky-Geier L, Hale JJ, Miller GA, Sword GA, Simpson SJ, Couzin ID (2011) Nutritional state and collective motion: from individuals to mass migration. Proc Biol Sci 278:356–363

    Article  PubMed  Google Scholar 

  • Bouaichi A, Roessingh P, Simpson SJ (1995) An analysis of the behavioural effects of crowding and re-isolation on solitary-reared adult desert locusts (Schistocerca gregaria, Forskal) and their offspring. Physiol Entomol 20:199–208

    Article  Google Scholar 

  • Buhl J, Sumpter DJT, Couzin ID, Hale J, Despland E, Miller ER, Simpson SJ (2006) From disorder to order in marching locusts. Science 312:1402–1406

    Article  PubMed  CAS  Google Scholar 

  • Buhl J, Sword GA, Clissold FJ, Simpson SJ (2011) Group structure in locust migratory bands. Behav Ecol Sociobiol 65:265–273

    Article  Google Scholar 

  • Burrows M (1996) The neurobiology of an insect brain. Oxford University Press, Oxford

    Book  Google Scholar 

  • Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, Ferguson D, Tsai HC, Pomeranz L, Christoffel DJ, Nectow AR, Ekstrand M, Domingos A, Mazei-Robison MS, Mouzon E, Lobo MK, Neve RL, Friedman JM, Russo SJ, Deisseroth K, Nestler EJ, Han MH (2013) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493:534–538

    Google Scholar 

  • Collett M, Despland E, Simpson SJ, Krakauer DC (1998) Spatial scales of desert locust gregarization. Proc Natl Acad Sci U S A 95:13052–13055

    Article  PubMed  CAS  Google Scholar 

  • Cullen D, Sword GA, Dodgson T, Simpson SJ (2010) Behavioural phase change in the Australian plague locust, Chortoicetes terminifera, is triggered by tactile stimulation of the antennae. J Insect Physiol 56:937–942

    Article  PubMed  CAS  Google Scholar 

  • Cullen DA, Sword GA, Simpson SJ (2012) Optimizing multivariate behavioural syndrome models in locusts using automated video tracking. Anim Behav 84:771–784

    Article  Google Scholar 

  • Dayan P, Balleine BW (2002) Reward, motivation, review and reinforcement learning. Neuron 36:285–298

    Article  PubMed  CAS  Google Scholar 

  • de Boer SF, Caramaschi D, Natarajan D, Koolhaas JM (2009) The vicious cycle towards violence: focus on the negative feedback mechanisms of brain serotonin neurotransmission. Front Behav Neurosci 3: article 52

    Google Scholar 

  • Dierick HA, Greenspan RJ (2006) Molecular analysis of flies selected for aggressive behavior. Nat Genet 38:1023–1031

    Article  PubMed  CAS  Google Scholar 

  • Dirsh VM (1953) Morphometrical studies on phases of the desert locust. Anti-Locust Bull 16:1–34

    Google Scholar 

  • Fuchs E, Flügge G (2003) Chronic social stress: effects on limbic brain structures. Physiol Behav 79:417–427

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E, Kutsch W, Ayali A (2003) Neural correlates to flight-related density dependent phase characteristics in locusts. J Neurobiol 57:152–162

    Article  PubMed  CAS  Google Scholar 

  • Gray LJ, Sword GA, Anstey ML, Clissold FJ, Simpson SJ (2009) Behavioural phase polyphenism in the Australian plague locust (Chortoicetes terminifera). Biol Lett 5:306–309

    Article  PubMed  Google Scholar 

  • Greenwood M, Chapman RF (1984) Differences in numbers of sensilla on the antennae of solitarious and gregarious Locusta migratoria L. (Orthoptera: Acrididae). Int J Insect Morphol Embryol 13:295–301

    Article  Google Scholar 

  • Guo W, Wang X, Ma Z, Xue L, Han J, Yu D, Kang L (2011) CSP and takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust. PLoS Genet 7:e1001291. doi:10.1371/journal.pgen.1001291

    Article  PubMed  CAS  Google Scholar 

  • Hansen MJ, Buhl J, Bazazi S, Simpson SJ, Sword GA (2011) Cannibalism in the lifeboat – collective movement in Australian plague locusts. Behav Ecol Sociobiol 65:1715–1720

    Article  Google Scholar 

  • Harris JW, Woodring J (1995) Elevated brain dopamine levels associated with ovary development in queenless worker honey bees (Apis mellifera L.). Comp Biochem Physiol C 111:271–279

    Article  Google Scholar 

  • Hoste B, Simpson SJ, Tanaka S, De Loof A, Breuer M (2002) A comparison of phase-related shifts in behavior and morphometrics of an albino strain, deficient in [His(7)]-corazonin, and a normally colored Locusta migratoria strain. J Insect Physiol 48:791–801

    Article  PubMed  CAS  Google Scholar 

  • Jacquin-Joly E, Vogt RG, Francois MC, Nagnan-Le Meillour P (2001) Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae. Chem Senses 26:833–844

    Article  PubMed  CAS  Google Scholar 

  • Kandel E (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Kang L, Chen X, Zhou Y, Liu B, Zheng W, Li R, Wang J, Yu J (2004) The analysis of large scale gene expression correlated to the phase changes of the migratory locust. Proc Natl Acad Sci U S A 101:17611–17615

    Article  PubMed  Google Scholar 

  • Kitabayashi AN, Arai T, Kubo T, Natori S (1998) Molecular cloning of cDNA for p10, a novel protein that increases in the regenerating legs of Periplaneta americana (American cockroach). Insect Biochem Mol Biol 28:785–790

    Article  PubMed  CAS  Google Scholar 

  • Kravitz EA (2000) Serotonin and aggression: insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior. J Comp Physiol 186:221–238

    Article  CAS  Google Scholar 

  • Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, Laplant Q, Graham A, Lutter M, Lagace DC, Ghose S, Reister R, Tannous P, Green TA, Neve RL, Chakravarty S, Kumar A, Eisch AJ, Self DW, Lee FS, Tamminga CA, Cooper DC, Gershenfeld HK, Nestler EJ (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404

    Article  PubMed  CAS  Google Scholar 

  • Lester RL, Grach C, Pener MP, Simpson SJ (2005) Stimuli inducing gregarious colouration and behaviour in nymphs of Schistocerca gregaria. J Insect Physiol 51:737–747

    Article  CAS  Google Scholar 

  • Ma ZY, Yu J, Kang L (2006) LocustDB: a relational database for the transcriptome and biology of the migratory locust (Locusta migratoria). BMC Genomics 7:11

    Article  PubMed  Google Scholar 

  • Ma Z, Guo W, Guo X, Wang X, Xue L, Yu D, Han J, Kang L (2011) Modulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway. Proc Natl Acad Sci U S A 108:3882–3887

    Article  PubMed  CAS  Google Scholar 

  • Maeno K, Tanaka S (2004) Hormonal control of phase-related changes in the number of antennal sensilla in the desert locust, Schistocerca gregaria: possible involvement of [His7]-corazonin. J Insect Physiol 50:855–865

    Article  PubMed  CAS  Google Scholar 

  • Matheson T, Rogers SM, Krapp HG (2004) Plasticity in the visual system is correlated with a change in lifestyle of solitarious and gregarious locusts. J Neurophysiol 91:1–12

    Article  PubMed  Google Scholar 

  • McQuillan HJ, Barron AB, Mercer AR (2012) Age- and behaviour-related changes in the expression of biogenic amine receptor genes in the antennae of honey bees (Apis mellifera). J Comp Physiol A 198:753–761

    Article  CAS  Google Scholar 

  • Meunier N, Belgacem YH, Martin JR (2007) Regulation of feeding behaviour and locomotor activity by takeout in Drosophila. J Exp Biol 210:1424–1434

    Article  PubMed  Google Scholar 

  • Miczek KA, de Almeida RMM, Kravitz EA, Rissman EF, de Boer SF, Raine A (2007) Neurobiology of escalated aggression and violence. J Neurosci 27:11803–11806

    Article  PubMed  CAS  Google Scholar 

  • Müller U, Carew T (1998) Serotonin induces temporally and mechanistically distinct phases of persistent PKA activity in Aplysia sensory neurons. Neuron 21:1423–1434

    Article  PubMed  Google Scholar 

  • Neumeister H, Whitaker KW, Hofmann HA, Preuss T (2010) Social and ecological regulation of a decision-making circuit. J Neurophysiol 104:3180–3188

    Article  PubMed  CAS  Google Scholar 

  • Ochieng’ SA, Hallberg E, Hansson BS (1998) Fine structure and distribution of antennal sensilla of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae). Cell Tissue Res 291:525–536

    Article  Google Scholar 

  • Ott SR, Rogers SM (2010) Gregarious desert locusts have substantially larger brains with altered proportions compared with the solitarious phase. Proc R Soc B 1697:3087–3096

    Article  Google Scholar 

  • Ott SR, Verlinden H, Rogers SM, Brighton CH, Quah PS, Vleugels RK, Verdonck R, Vanden Broeck J (2012) A critical role for protein kinase A in the acquisition of gregarious behavior in the desert locust. Proc Natl Acad Sci U S A 109:E381–E387

    Article  PubMed  CAS  Google Scholar 

  • Pener MP, Simpson SJ (2009) Locust phase polyphenism: an update. Adv Insect Physiol 36:1–286

    Article  Google Scholar 

  • Perry CJ, Barron AB (2013) Neural mechanisms of reward in insects. Annu Rev Entomol 58:543–562

    Article  PubMed  CAS  Google Scholar 

  • Rind FC, Simmons PJ (1992) Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. J Neurophysiol 68:1654–1666

    PubMed  CAS  Google Scholar 

  • Roessingh P, Simpson SJ (1994) The time-course of behavioural phase change in nymphs of the desert locust, Schistocerca gregaria. Physiol Entomol 19:191–197

    Article  Google Scholar 

  • Roessingh P, Simpson SJ, James S (1993) Analysis of phase-related changes in behavior of desert locust nymphs. Proc R Soc B 252:43–49

    Article  Google Scholar 

  • Roessingh P, Bouaichi A, Simpson SJ (1998) Effects of sensory stimuli on the behavioural phase state of the desert locust, Schistocerca gregaria. J Insect Physiol 44:883–893

    Article  PubMed  CAS  Google Scholar 

  • Rogers SM, Matheson T, Despland E, Dodgson T, Burrows M, Simpson SJ (2003) Mechanosensory-induced behavioural gregarization in the desert locust Schistocerca gregaria. J Exp Biol 206:3991–4002

    Article  PubMed  Google Scholar 

  • Rogers SM, Matheson T, Sasaki K, Kendrick K, Simpson SJ, Burrows M (2004) Substantial changes in central nervous system neurotransmitters and neuromodulators accompany phase change in the locust. J Exp Biol 207:3603–3617

    Article  PubMed  CAS  Google Scholar 

  • Rogers SM, Krapp HG, Burrows M, Matheson T (2007) Compensatory plasticity at an identified synapse tunes a sensorimotor pathway. J Neurosci 27:4621–4633

    Article  PubMed  CAS  Google Scholar 

  • Rogers SM, Harston GWJ, Kilburn-Toppin F, Matheson T, Burrows M, Gabbiani F, Krapp HG (2010) Spatiotemporal receptive field properties of a looming-sensitive neuron in solitarious and gregarious phases of the desert locust. J Neurophysiol 103:779–792

    Article  PubMed  Google Scholar 

  • Rowell CHF (1971) The orthopteran descending movement detector (DMD) neurones: a characterisation and review. Z Vergl Physiol 73:167–194

    Article  Google Scholar 

  • Sarov-Blat L, So WV, Liu L, Rosbash M (2000) The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior. Cell 101:647–656

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Yamasaki K, Tsuchida K, Nagao T (2009) Gonadotropic effects of dopamine in isolated workers of the primitively eusocial wasp, Polistes chinensis. Naturwissenschaften 96:625–629

    Article  PubMed  CAS  Google Scholar 

  • Schulz DJ, Robinson GE (1999) Biogenic amines and division of labor in honey bee colonies: behaviorally related changes in the antennal lobes and age-related changes in the mushroom bodies. J Comp Physiol A 184:481–488

    Article  PubMed  CAS  Google Scholar 

  • Simmons PJ (1980) Connexions between a movement-detecting visual interneurone and flight motoneurones of a locust. J Exp Biol 86:87–97

    Google Scholar 

  • Simmons PJ, Rind FC (1992) Orthopteran DCMD neuron: a reevaluation of responses to moving objects. II. Critical cues for detecting approaching objects. J Neurophysiol 68:1667–1682

    PubMed  CAS  Google Scholar 

  • Simpson SJ, McCaffery AR, Hagele BF (1999) A behavioural analysis of phase change in the desert locust. Biol Rev 74:461–480

    Article  Google Scholar 

  • Simpson SJ, Despland E, Hägele BF, Dodgson T (2001) Gregarious behavior in desert locusts is evoked by touching their back legs. Proc Natl Acad Sci U S A 98:3895–3897

    Article  PubMed  CAS  Google Scholar 

  • Sword GA (1999) Density-dependent warning coloration. Nature 397:217

    Article  CAS  Google Scholar 

  • Tawfik AI, Tanaka S, De Loof A, Schoofs L, Baggerman G, Waelkens E, Derua R, Milner Y, Yerushalmi Y, Pener MP (1999) Identification of the gregarization-associated dark-pigmentotropin in locusts through an albino mutant. Proc Natl Acad Sci U S A 96:7083–7087

    Article  PubMed  CAS  Google Scholar 

  • Uvarov BP (1921) A revision of the genus Locusta, L. (= Pachytylus, Fieb.), with a new theory as to periodicity and migrations of locusts. Bull Entomol Res 12:135–163

    Article  Google Scholar 

  • Uvarov B (1966) Grasshoppers and locusts, vol 1. Cambridge University Press, London

    Google Scholar 

  • Uvarov B (1977) Grasshoppers and locusts, vol 2. Centre for Overseas Pest Research, London

    Google Scholar 

  • Wagener-Hulme C, Kuehn JC, Schulz DJ, Robinson GE (1999) Biogenic amines and division of labor in honey bee colonies. J Comp Physiol A 184:471–479

    Article  PubMed  CAS  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Wu R, Wu Z, Wang X, Yang P, Yu D, Zhao C, Xu G, Kang L (2012) Metabolomic analysis reveals that carnitines are key regulatory metabolites in phase transition of the locusts metabolic pathway. Proc Natl Acad Sci U S A 109:3259–3263

    Article  PubMed  CAS  Google Scholar 

  • Yeh SR, Fricke RA, Edwards DH (1996) The effect of social experience on serotonergic modulation of the escape circuit of crayfish. Science 271:366–369

    Article  PubMed  CAS  Google Scholar 

  • Young LJ, Wang ZX (2004) The neurobiology of pair bonding. Nat Neurosci 7:1048–1054

    Article  PubMed  CAS  Google Scholar 

  • Young KA, Gobrogge KL, Liu Y, Wang ZX (2011) The neurobiology of pair bonding: insights from a socially monogamous rodent. Front Neuroendocrinol 32:53–69

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was largely supported by grants from the BBSRC (UK). I thank Malcolm Burrows and Darron Cullen for reading and commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Rogers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rogers, S.M. (2014). The Neurobiology of a Transformation from Asocial to Social Life During Swarm Formation in Desert Locusts. In: Decety, J., Christen, Y. (eds) New Frontiers in Social Neuroscience. Research and Perspectives in Neurosciences, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-02904-7_2

Download citation

Publish with us

Policies and ethics