Skip to main content

Focused Ion Beam-Assisted Nanoscale Processing and Thermoelectrical Characterization

  • Chapter
  • First Online:
FIB Nanostructures

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 20))

  • 1867 Accesses

Abstract

In this report, we introduce a nanomanipulation and fabrication technology, which is useful to characterize thermoelectrical properties of individual one-dimensional nanosystems such as metallic or semiconducting carbon nanotubes (CNTs) and nanowires (NWs). For such characterization, a one-stop measurement platform was constructed by focused ion beam (FIB) nanolithography after which a freestanding NW was picked up from a bundle of NWs and placed on the platform using a nanomanipulator. As a unique and unparalleled control for nanoscale one-dimensional systems, FIB-assisted nanomanipulator could make a direct access to nanoscale materials and structures. Subsequently, the four-point 3-ω method combined with a nanoheater was used to obtain electrical conductivity, thermal conductivity, and Seebeck coefficient, with which one can estimate the figure of merit of β-silicon carbide (SiC) NWs. We found that the thermal conductivity of a single β-SiC NW was 82 ± 6 W/mK. The Seebeck coefficient was also successfully measured to be −1.21 mV/K. With a measured electrical conductivity of the NW, the dimensionless thermoelectrical figure of merit (ZT) was estimated to be 0.12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melngailis, J.: Critical review: focused ion beam technology and applications. J. Vac. Sci. Technol. B 5, 469 (1987)

    Article  Google Scholar 

  2. Reyntjens, S., Puers, R.: A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11, 287 (2001)

    Article  Google Scholar 

  3. Reyntjens, S., De Bruyker, D., Puers, R.: Focused ion beam as an inspection tool for microsystem technology. Proceedings of the 1998 Microsystem Symposium, vol. 125, Delft, the Netherlands (1998)

    Google Scholar 

  4. Ward, B.W., Economou, N.P., Shaver, D.C., Ivory, J.E., Ward, M.L., Stern, L.A.: Microcircuit modification using focused ion beams. Proc. SPIE 923, 92 (1988)

    Article  Google Scholar 

  5. Orloff, J., Utlaut, M., Swanson, L.: High resolution focused ion beams: FIB and its applications. Springer Press, New York (2003)

    Book  Google Scholar 

  6. Casady, J.B., Johnson, R.W.: Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid-State Electron. 39, 1409 (1996)

    Article  Google Scholar 

  7. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997)

    Article  Google Scholar 

  8. Liang, C.H., Meng, G.W., Zhang, L.D., Wu, Y.C., Cui, Z.: Large-scale synthesis of b-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles. Chem. Phys. Lett. 329, 323 (2000)

    Article  Google Scholar 

  9. Shenai, K., Scott, R.S., Baliga, B.J.: Optimum semiconductors for high-power electronics. IEEE Trans. Elec. Dev. 36, 1811–1823 (1989)

    Article  Google Scholar 

  10. Dai, H.J., Wong, E.W., Lu, Y.Z., Fan, S.S., Lieber, C.M.: Synthesis and characterization of carbide nanorods. Nature (London) 375, 769 (1995)

    Article  Google Scholar 

  11. Li, Z.J., Li, H.J., Chen, X.L., Meng, A.L., Li, K.Z., Xu, Y.P., Dai, L.: Large-scale synthesis of crystalline β-SiC nanowires. Appl. Phys. A Mater. Sci. Process 76, 637 (2003)

    Article  Google Scholar 

  12. Rogdakis, K., Lee, S.Y., Bescond, M., Lee, S.K., Bano, E., Zekentes, K.: Theoretical comparison of 3C-SiC and Si nanowire FETs in ballistic and diffusive regimes. IEEE Trans. Elec. Dev. 55, 1970–1976 (2008)

    Article  Google Scholar 

  13. Lee, K.M., Lee, S.K., Choi, T.Y.: Highly enhanced thermoelectric figure of merit of a β-SiC nanowire with a nanoelectromechanical measurement approach. Appl. Phys. A 106, 955–960 (2012)

    Article  Google Scholar 

  14. Platinum deposition Technical note (FEI Company, Hillsboro, OR) PN 4035 272 21851-D (2003)

    Google Scholar 

  15. Lee, K.M., Choi, T.Y., Lee, S.K.: Measurement of figure of merit for a single β-silicon carbide nanowire by the four-point three-ω method. TechConnect World 2010 Proceedings (Nanotechnology 2010) vol. 2, pp. 202–205 (2010)

    Google Scholar 

  16. Lee, J., Wang, A.A., Rheem, Y., Yoo, B., Mulchandani, A., Chen, W., Myung, N.V.: DNA assisted assembly of multisegmented nanowires. Electroanalysis 19(22), 2287 (2007)

    Article  Google Scholar 

  17. Heo, K., Cho, E., Yang, J.E., Kim, M.H., Lee, M., Lee, B.Y., Kwon, S.G., Lee, M.S., Jo, M.H., Choi, H.J., Hyeon, T., Hong, S.: Large-scale assembly of silicon nanowire network-based devices using conventional microfabrication facilities. Nano Lett. 8(12), 4523 (2008)

    Article  Google Scholar 

  18. Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Contact line deposits in an evaporating drop. Phys. Rev. E 62(1), 756 (2000)

    Article  Google Scholar 

  19. Liu, Y., Chung, J., Liu, W.K., Ruoff, R.S.: Dielectrophoretic assembly of nanowire. J. Phys. Chem. B 110, 14098–14106 (2006)

    Article  Google Scholar 

  20. Chung, J., Lee, K., Lee, J., Ruoff, R.S.: Toward large-scale integration of carbon. Nanotubes (Langmuir) 20(8), 3011–3017 (2004)

    Google Scholar 

  21. Boote, J.J., Evans, S.D.: Dielectrophoretic manipulation and electrical characterization of gold nanowires. Nanotechnology 16, 1500–1505 (2005)

    Article  Google Scholar 

  22. Schwamb, T., Choi, T.Y., Schirmer, N., Bieri, N.R., Burg, B., Tharian, J., Sennhauser, U., Poulikakos, D.: Dielectrophoretic method for high yield deposition of suspended, individual carbon nanotubes with 4-point electrode contact. Nano Lett. 7, 3633 (2007)

    Article  Google Scholar 

  23. Lee, K.M., Choi, T.Y., Lee, S.K., Poulikakos, D.: Focused ion beam-assisted manipulation of single and double β-SiC nanowires and their thermal conductivity measurements by the four-point-probe 3-ω method. Nanotechnology 21, 125301 (2010)

    Article  Google Scholar 

  24. Gopal, V., Radmilovic, V.R., Daraio, C., Jin, S., Yang, P., Stach, E.A.: Rapid prototyping of site-specific nanocontacts by electron and ion beam assisted direct-write nanolithography. Nano Lett. 4, 2059 (2004)

    Article  Google Scholar 

  25. Shi, L., Hao, Q., Yu, C., Mingo, N., Kong, X., Wang, Z.L.: Thermal conductivities of individual tin dioxide nanobelts. Appl. Phys. Lett. 84, 2638 (2004)

    Article  Google Scholar 

  26. Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A.: Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934 (2003)

    Article  Google Scholar 

  27. Wang, J., Wang, J.-S.: Carbon nanotube thermal transport: ballistic to diffusive. Appl. Phys. Lett. 88, 111909 (2006)

    Article  Google Scholar 

  28. Bryning, M.B., Milkie, D.E., Islam, M.F., Kikkawa, J.M., Yodh, A.G.: Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl. Phys. Lett. 87, 161909 (2005)

    Article  Google Scholar 

  29. Vavro, J., Llaguno, M.C., Satishkumar, B.C., Luzzi, D.E., Fischer, J.E.: Electrical and thermal properties of C60-filled single-wall carbon nanotubes. Appl. Phys. Lett. 80, 1450 (2002)

    Article  Google Scholar 

  30. Choi, T.Y., Poulikakos, D., Tharian, J., Sennhauser, U.: Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-ω method. Appl. Phys. Lett. 87, 013108 (2005)

    Article  Google Scholar 

  31. Choi, T.Y., Poulikakos, D., Tharian, J., Sennhauser, U.: Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method. Nano Lett. 6, 1589 (2006)

    Article  Google Scholar 

  32. Lu, L., Yi, W., Zhang, D.L.: 3ω method for specific heat and thermal conductivity measurements. Rev. Sci. Instrum. 72, 2996 (2001)

    Article  Google Scholar 

  33. Yi, W., Lu, L., Dian-lin, Z., Pan, Z.W., Xie, S.X.: Linear specific heat of carbon nanotubes. Phys. Rev. B 59, R9015 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Youl Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, KM., Choi, TY. (2013). Focused Ion Beam-Assisted Nanoscale Processing and Thermoelectrical Characterization. In: Wang, Z. (eds) FIB Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-02874-3_14

Download citation

Publish with us

Policies and ethics