Skip to main content
Log in

Highly enhanced thermoelectric figure of merit of a β-SiC nanowire with a nanoelectromechanical measurement approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We developed a reliable and highly reproducible way of fabricating a one-stop measurement platform for characterizing the thermoelectric properties of individual nanowires (NWs) using a focused ion beam and a nanomanipulator. 3-ω and 1-ω signals obtained by the four-point-probe method were used in measuring the thermal and electrical conductivities of the NW. Subsequently, the Seebeck coefficient was measured by using additional nanoelectrodes including a nanoheater. The thermal conductivity of the single β-SiC NW was obtained at 86.5±3.5 W/mK. The Seebeck coefficient was obtained to be −1.21 mV/K by using the same measurement platform. Thus, the dimensionless figure of merit, ZT=σS 2 T/k, was measured to be ∼0.12. This value is around 120 times higher than the reported maximum value of bulk β-SiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.-M. Lin, X. Sun, M.S. Dresselhaus, Phys. Rev. B 62, 4610 (2000)

    Article  ADS  Google Scholar 

  2. Y.-M. Lin, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus, J.P. Heremans, Appl. Phys. Lett. 76, 3944 (2000)

    Article  ADS  Google Scholar 

  3. Y.-M. Lin, O. Rabin, M.S. Dresselhaus, in Proc. 21st Int. Conf. (2002), p. 265

    Google Scholar 

  4. N. Mingo, Appl. Phys. Lett. 84, 2652 (2004)

    Article  ADS  Google Scholar 

  5. N. Mingo, Appl. Phys. Lett. 85, 5986 (2004)

    Article  ADS  Google Scholar 

  6. L. Shi, Q. Hao, C. Yu, N. Mingo, X. Kong, Z.L. Wang, Appl. Phys. Lett. 84, 2636 (2004)

    ADS  Google Scholar 

  7. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003)

    Article  ADS  Google Scholar 

  8. J. Wang, J.-S. Wang, Appl. Phys. Lett. 88, 111909 (2006)

    Article  ADS  Google Scholar 

  9. M.B. Bryning, D.E. Milkie, M.F. Islam, J.M. Kikkawa, A.G. Yodh, Appl. Phys. Lett. 87, 161909 (2005)

    Article  ADS  Google Scholar 

  10. J. Vavro, M.C. Llaguno, B.C. Satishkumar, D.E. Luzzi, J.E. Fischer, Appl. Phys. Lett. 80, 1450 (2002)

    Article  ADS  Google Scholar 

  11. T.Y. Choi, D. Poulikakos, J. Tharian, U. Sennhauser, Appl. Phys. Lett. 87, 013108 (2005)

    Article  ADS  Google Scholar 

  12. T.Y. Choi, D. Poulikakos, J. Tharian, U. Sennhauser, Nano Lett. 6, 1589 (2006)

    Article  ADS  Google Scholar 

  13. L. Lu, W. Yi, D.L. Zhang, Rev. Sci. Instrum. 72, 2996 (2001)

    Article  ADS  Google Scholar 

  14. H. Seong, H. Choi, S. Lee, J. Lee, D. Choi, Appl. Phys. Lett. 85, 1256 (2004)

    Article  ADS  Google Scholar 

  15. K.M. Lee, T.Y. Choi, S.K. Lee, D. Poulikakos, Nanotechnology 21, 125301 (2010)

    Article  ADS  Google Scholar 

  16. W. Yi, L. Lu, Z. Dian-lin, P.W. Pan, S. Xie, Phys. Rev. B 59, R9015 (1999)

    Article  ADS  Google Scholar 

  17. D. Morelli, J. Hermans, C. Beetz, W.S. Woo, G.L. Harris, C. Taylor, in Silicon Carbide and Related Materials. Inst. Phys. Conf. Ser., vol. 137 (Institute of Physics, Bristol, 1993), p. 313

    Google Scholar 

  18. J.E. Parrott, A.D. Stuckes, Thermal Conductivity of Solids (Methuen, New York, 1975)

    Google Scholar 

  19. A. Balandian, K.L. Wang, Phys. Rev. B 58, 1544 (1998)

    Article  ADS  Google Scholar 

  20. A. Khitun, A. Balandin, K.L. Wang, Superlattices Microstruct. 26, 181 (1999)

    Article  ADS  Google Scholar 

  21. J. Zou, A. Balandin, J. Appl. Phys. 89(5), 2932 (2001)

    Article  ADS  Google Scholar 

  22. N. Abu-Ageel, M. Aslam, R. Ager, L. Rimai, Semicond. Sci. Technol. 15, 32 (2000)

    Article  ADS  Google Scholar 

  23. K.M. Lee, T.Y. Choi, S.K. Lee, in NSTI Nanotech, vol. 2 (2010), p. 202

    Google Scholar 

  24. L.D. Hick, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)

    Article  ADS  Google Scholar 

  25. A. Balandian, K.L. Wang, Appl. Phys. 84, 6149 (1998)

    Google Scholar 

  26. M. Fujisawa, T. Hata, H. Kitagawa, P. Bronsveld, Y. Suzuki, K. Hasezaki, Y. Noda, Y. Imamura, Renew. Energy 33, 309 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by NSF CMMI-0841265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Youl Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KM., Lee, SK. & Choi, TY. Highly enhanced thermoelectric figure of merit of a β-SiC nanowire with a nanoelectromechanical measurement approach. Appl. Phys. A 106, 955–960 (2012). https://doi.org/10.1007/s00339-011-6718-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6718-0

Keywords

Navigation