Skip to main content

Calculating Structural Properties of Reversibly Crosslinked Polymer Systems Using Self-Consistent Field Theory

  • Conference paper
  • First Online:
Intelligent Hydrogels

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 140))

Abstract

We study the influence of reversible crosslinks on a polymer blend with the help of an extended self-consistent mean field theory. The systems consist of homopolymers of type A and B and copolymers of type AB. Copolymers AB are reversibly crosslinked with a crosslink strength z. The links include monomers of type A and B with weights ω A and ω B , respectively. Crosslinking of A and B polymers is prohibited. Without crosslinks the system shows a homogeneous phase, a lamellar phase, a hexagonal phase, and a fully demixed state. Setting \(\omega _{A} +\omega _{B} = 1\), we find that the total crosslink strength z and the crosslink asymmetry \(\varDelta \omega \equiv \omega _{A} -\omega _{B}\) has a distinct influence on the structure of the system. We show that the microstructure can be switched from a hexagonal to a lamellar structure by increasing z or Δ ω.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu J (2011) Soft Matter 7:6757

    Article  CAS  Google Scholar 

  2. Gawel K, Barriet D, Sletmoen M, Stokke BT (2010) Sensors 10:4381

    Article  CAS  Google Scholar 

  3. Richter A, Paschew G, Klatt S, Lienig J, Arndt K-F, Adler H-P (2008) Sensors 8:561

    Article  CAS  Google Scholar 

  4. Amin S, Rajabnezhad S, Kohli K (2009) Sci Res Essays 3:1175

    Google Scholar 

  5. Deligkaris K, Tadele TS, Olthuis W, van den Berg A (2010) Sens Actuator B-Chem 147:765

    Article  CAS  Google Scholar 

  6. Shi J, Ouyang J, Li QT, Wang LY, Wu J, Zhong W, Xing MMQ (2012) J Mater Chem 22:23962

    Google Scholar 

  7. Liu Y-L, Hsieh C-Y, Chen Y-W (2006) Polymer 47:2581

    Article  CAS  Google Scholar 

  8. Wei H-L, Yang J, Chu H-J, Yang Z, Ma C-C, Yao K (2011) J Appl Polym Sci 120:974

    Article  CAS  Google Scholar 

  9. Jiang J, Qi B, Lepage M, Zhao Y (2007) Macromolecules 40:790

    Article  CAS  Google Scholar 

  10. OReilly RK, Hawkerb CJ, Wooleyc KL (2006) Chem Soc Rev 35:1068

    Google Scholar 

  11. Li D, Gruhn T, Emmerich H (2012) J Chem Phys 137:024906

    Article  Google Scholar 

  12. Edwards SF (1965) Proc Phys Soc 85:613

    Article  CAS  Google Scholar 

  13. Helfand E, Yukiko T (1972) J Chem Phys 56:3592

    Article  CAS  Google Scholar 

  14. Fredrickson G (2006) The equilibrium theory of inhomogeneous polymers. Oxford University Press, New York

    Google Scholar 

  15. Fredrickson GH, Ganesan V, Drolet F (2002) Macromolecules 35:16

    Article  CAS  Google Scholar 

  16. Schmid F (1998) J Phys Condens Matter 10:8108

    Google Scholar 

  17. Müller M, Katsov K, Schick M (2006) Phys Rep 434:113

    Article  Google Scholar 

  18. Müller M, Schmid F (2005) Adv Polym Sci 185:1

    Article  Google Scholar 

  19. Leibler L (1980) Macromolecules 13:1602

    Article  CAS  Google Scholar 

  20. Matsen MW, Schick M (1994) Phys Rev Lett 72:2660

    Article  CAS  Google Scholar 

  21. Matsen MW, Bates FS (1996) Macromolecules 29:1091

    Article  CAS  Google Scholar 

  22. Shull KR (1992) Macromolecules 25:2122

    Article  CAS  Google Scholar 

  23. Matsen MW, Schick M (1996) Curr Opin Colloid Interface Sci 1:329

    Article  Google Scholar 

  24. Matsen MW (1998) Curr Opin Colloid Interface Sci 3:40

    Article  CAS  Google Scholar 

  25. Philipp KJ, Schick M (1997) Macromolecules 30:137

    Article  Google Scholar 

  26. Philipp KJ, Schick M (1997) Macromolecules 30:3916

    Article  Google Scholar 

  27. Noolandi J, Hong KM (1982) Macromolecules 15:482

    Article  CAS  Google Scholar 

  28. Israels R, Jasnow D, Balazs AC, Guo L, Krausch G, Sokolov J, Rafailovich M (1995) J Chem Phys 102:8149

    Article  CAS  Google Scholar 

  29. Shull KR, Kramer EJ (1990) Macromolecules 23:4769

    Article  CAS  Google Scholar 

  30. Shull KR (1993) Macromolecules 26:2346

    Article  CAS  Google Scholar 

  31. Hong KM, Noolandi J (1981) Macromolecules 14:727

    Article  CAS  Google Scholar 

  32. Noolandi J, Hong KM (1984) Macromolecules 17:1531

    Article  CAS  Google Scholar 

  33. Noolandi J, Shi A-C (1996) Macromolecules 29:5907

    Article  CAS  Google Scholar 

  34. Vilgis TA, Borsali R (1991) Phys Rev A 43:6857

    Article  CAS  Google Scholar 

  35. Wang Q, Taniguchi T, Fredrickson GH (2004) J Phys Chem B 108:6733

    Article  CAS  Google Scholar 

  36. Müller M, Schick M (1998) Phys Rev E 57:6973

    Article  Google Scholar 

  37. Elliott R, Katsov K, Schick M, Szleifer I (2004) J Chem Phys 122:44904

    Article  Google Scholar 

  38. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  39. Edwards SF (1988) J Phys Fr 49:1673

    Article  Google Scholar 

  40. Panyukov S, Rabin Y (1996) Phys Rep 269:1

    Article  CAS  Google Scholar 

  41. Schulz M (2000) J Chem Phys 113:10793

    Article  CAS  Google Scholar 

  42. Li D, Yang H, Emmerich H (2011) Colloid Polym Sci 289:513

    Article  CAS  Google Scholar 

  43. Mohan A, Elliott R, Fredrickson GH (2010) J Chem Phys 133:174903

    Article  Google Scholar 

  44. Goldbart PM, Castillo H, Zippelius A (1996) Adv Phys 45: 393

    Article  CAS  Google Scholar 

  45. Ulrich S, Mao X, Goldbart M, Zippelius A (2006) Europhys Lett 76:677

    Article  CAS  Google Scholar 

  46. Xing X, Pfahl S, Mukhopadhyay S, Goldbart M, Zippelius A (2008) Phys Rev E 77:051802

    Article  Google Scholar 

  47. Goldbart PM, Zippelius A (1994) Europhys Lett 27:599

    Article  CAS  Google Scholar 

  48. Benetatos P, Zippelius A (2007) Phys Rev Lett 99:198301

    Article  Google Scholar 

  49. Ulrich S, Zippelius A, Benetatos P (2010) Phys Rev E 81: 021802

    Article  Google Scholar 

  50. Helfand E (1975) J Chem Phys 62:999

    Article  CAS  Google Scholar 

  51. Düchs D, Ganesan V, Fredrickson GH, Schmid F (2003) Macromolecules 36:9237

    Article  Google Scholar 

  52. Bates FS, Maurer WW, Lipic PM, Hillmyer MA, Almdal K, Mortensen K, Fredrickson GH, Lodge TP (1997) Phys Rev Lett 79:849

    Article  CAS  Google Scholar 

  53. Hillmyer MA, Maurer WW, Lodge TP, Bates FS, Almdal KJ (1999) Phys Chem 103:4814

    CAS  Google Scholar 

  54. Crank J, Nicolson P (1947) Proc Camb Philos Soc 43:50

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by DFG SPP 1259: “Intelligent Hydrogels. Modelling and simulation of hydrogel swelling under strong non-equilibrium conditions using the phase-field and phase-field crystal methods” and DFG SFB 840: “Von partikulären Nanosystemen zur Mesotechnologie”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gruhn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Gruhn, T., Li, D., Emmerich, H. (2013). Calculating Structural Properties of Reversibly Crosslinked Polymer Systems Using Self-Consistent Field Theory. In: Sadowski, G., Richtering, W. (eds) Intelligent Hydrogels. Progress in Colloid and Polymer Science, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-01683-2_18

Download citation

Publish with us

Policies and ethics