Skip to main content

Electroporation-Based Gene Transfer

  • Chapter
  • First Online:
Molecular Vaccines

Abstract

When an external electric field, under specific pulse conditions, is applied to cells, in suspension or in biological tissues, the permeability of cell membranes is transiently increased. This physical method, termed electroporation, can be used to introduce poorly or non permeant molecules into the cell. The combination of electroporation and chemotherapy is termed electrochemotherapy. Electrochemotherapy enhances local cytotoxicity of hydrophilic drugs that do not easily pass the cell membrane, e.g. Bleomycin. This combination treatment has proven effective in local control of metastatic tumour nodules to the skin, independently of the histotype. Delivery of genetic materials into the target tissues or cells by means of electric pulses is referred to as electroporation based gene transfer. Gene expression level and kinetic patterns after in vivo electroporation mediated delivery can be optimized and adapted for different purposes by employing different applicator configuration, electrical parameters, and target tissues of delivery. The current chapter discusses present knowledge of nonviral gene delivery, the mechanism of DNA electrotransfer, and clinical applications focusing on delivery to skeletal muscle and skin. An overview of the equipment, tissue electroporation device and electrodes, currently available for clinical use of electroporation based gene transfer is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kotnik, T., Bobanovic, F., Miklavcic, D.: Sensitivity of transmembrane voltage induced by applied electric fields – a theoretical analysis. Bioelectrochem. Bioenerg. 43, 285–291 (1997)

    Article  CAS  Google Scholar 

  2. Miklavcic, D., Semrov, D., Mekid, H., Mir, L.M.: A validated model of in vivo electric field distribution for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim. Biophys. Acta 1523, 73–83 (2000)

    Article  PubMed  CAS  Google Scholar 

  3. Rubinsky, B.: Irreversible electroporation in medicine. Technol. Cancer Res. Treat. 6, 255–260 (2007)

    PubMed  Google Scholar 

  4. Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P.H.: Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841–845 (1982)

    PubMed  CAS  Google Scholar 

  5. Silve, A., Mir, L.M.: Cell electropermeabilization and cellular uptake of small molecules: the electrochemotherapy concept. In: Kee, S.T., Gehl, J., Lee, E.W. (eds.) Clinical Aspects of Electroporation 1, pp. 69–82. Springer, New York (2011)

    Chapter  Google Scholar 

  6. Mir, L.M., et al.: Electrochemotherapy, a new antitumour treatment: first clinical trial. C. R. Acad. Sci. III 313, 613–618 (1991)

    PubMed  CAS  Google Scholar 

  7. Sersa, G.: The state of the art of electrochemotherapy before ESOPE study. Advantages and clinical use. Eur. J. Cancer. Suppl. 4, 52–59 (2006)

    Article  Google Scholar 

  8. Marty, M., et al.: Electrochemotherapy – an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases. Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur. J. Cancer. 4, 3–13 (2006)

    CAS  Google Scholar 

  9. Mir, L.M., et al.: Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the Cliniporator by means of invasive or noninvasive electrodes. Eur. J. Cancer. Suppl. 4, 14–25 (2006)

    Article  CAS  Google Scholar 

  10. Mali, B., Jarm, T., Snoj, M., Sersa, G., Miklavcic, D.: Antitumor effectiveness of electrochemotherapy: a systematic review and meta-analysis. Eur. J. Surg. Oncol. 39, 4–16 (2012). http://dx.doi.org/10.1016/j.ejso.2012.08.016

    Article  PubMed  Google Scholar 

  11. Mir, L.M., Moller, P.H., André, F., Gehl, J.: Electric pulse-mediated gene delivery to various animal tissues. Adv. Genet. 54, 83–114 (2005)

    Article  PubMed  CAS  Google Scholar 

  12. Durieux, A.C., Bonnefoy, R., Manissolle, C., Freyssenet, D.: High-efficiency gene electrotransfer into skeletal muscle: description and physiological applicability of a new pulse generator. Biochem. Biophys. Res. Commun. 296(2), 443–450 (2002)

    Article  PubMed  CAS  Google Scholar 

  13. Hacein-Bey-Abina, S., et al.: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302(5644), 415–419 (2003)

    Article  PubMed  CAS  Google Scholar 

  14. Hacein-Bey-Abina, S., Le Deist, F., Carlier, F., Bouneaud, C., Hue, C., De Villartay, J.P., Thrasher, A.J., Wulffraat, N., Sorensen, R., Dupuis-Girod, S., Fischer, A., Davies, E.G., Kuis, W., Leiva, L., Cavazzana-Calvo, M.: Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med. 346(16), 1185–1193 (2002)

    Article  PubMed  CAS  Google Scholar 

  15. Couzin, J., Kaiser, J.: Gene therapy. As Gelsinger case ends, gene therapy suffers another blow. Science 307(5712), 1028 (2005)

    Article  PubMed  CAS  Google Scholar 

  16. Budker, V., et al.: Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process. J. Gene Med. 2, 76–88 (2000)

    Article  PubMed  CAS  Google Scholar 

  17. Dauty, E., Remy, J.S., Blessing, T., Behr, J.P.: Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture. J. Am. Chem. Soc. 123, 9227–9234 (2001)

    Article  PubMed  CAS  Google Scholar 

  18. Lin, M.T., Pulkkinen, L., Uitto, J., Yoon, K.: The gene gun: current application in cutaneous gene therapy. Int. J. Dermatol. 39, 161–170 (2000)

    Article  PubMed  CAS  Google Scholar 

  19. Davidson, J.M., Krieg, T., Eming, S.A.: Particle-mediated gene therapy of wounds. Wound Repair Regen. 8, 452–459 (2000)

    Article  PubMed  CAS  Google Scholar 

  20. Newman, C.M., Lawrie, A., Brisken, A.F., Cumberland, D.C.: Ultrasound gene therapy: on the road from concept to reality. Echocardiography 18, 339–347 (2001)

    Article  PubMed  CAS  Google Scholar 

  21. Liu, F., Huang, L.: Improving plasmid DNA-mediated liver gene transfer by prolonging its retention in the hepatic vasculature. J. Gene Med. 3, 569–576 (2001)

    Article  PubMed  CAS  Google Scholar 

  22. Sukharev, S.I., Klenchin, V.A., Serov, S.M., Chernomordik, L.V., Chizmadzhev, YuA.: Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys. J. 63(5), 1320–1327 (1992)

    Google Scholar 

  23. Klenchin, V.A., Sukharev, S.I., Serov, S.M., Chernomordik, L.V., Chizmadzhev, YuA.: Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophys. J. 60(4), 804–811 (1991)

    Google Scholar 

  24. Heller, R., Jaroszeski, M., Atkin, A., et al.: In vivo gene electroinjection and expression in rat liver. FEBS Lett. 389, 225–228 (1996)

    Article  PubMed  CAS  Google Scholar 

  25. Mir, L.M., Bureau, M.F., Gehl, J., Rangara, R., Rouy, D., Caillaud, J.M., Delaere, P., Branellec, D., Schwartz, B., Scherman, D.: High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl. Acad. Sci. U.S.A. 96(8), 4262–4267 (1999)

    Article  PubMed  CAS  Google Scholar 

  26. Bureau, M.F., Gehl, J., Deleuze, V., Mir, L.M., Scherman, D.: Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim. Biophys. Acta 1474, 353–359 (2000)

    Article  PubMed  CAS  Google Scholar 

  27. Wolff, J.A., et al.: Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468 (1990)

    Article  PubMed  CAS  Google Scholar 

  28. André, F., Mir, L.M.: DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther. 11(1), S33–S42 (2004)

    Article  PubMed  Google Scholar 

  29. Gehl, J.: Electroporation for drug and gene delivery in the clinic: doctors go electric. Methods Mol. Biol. 423, 351–359 (2008)

    Article  PubMed  CAS  Google Scholar 

  30. Hojman, P., Gissel, H., Gehl, J.: Sensitive and precise regulation of haemoglobin after gene transfer of erythropoietin to muscle tissue using electroporation. Gene Ther. 14(12), 950–959 (2007)

    Article  PubMed  CAS  Google Scholar 

  31. Gothelf, A., Gehl, J.: Gene electrotransfer to skin; review of existing literature and clinical perspectives. Curr. Gene Ther. 10(4), 287–299 (2010)

    Article  PubMed  CAS  Google Scholar 

  32. Kutzler, M.A., Weiner, D.B.: DNA vaccines: ready for prime time? Nat. Rev. Genet. 9, 776–788 (2008)

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, L., Li, L., Hoffmann, G.A., Hoffman, R.M.: Depth-targeted efficient gene delivery and expression in the skin by pulsed electric fields: an approach to gene therapy of skin aging and other diseases. Biochem. Biophys. Res. Commun. 220(3), 633–636 (1996)

    Article  PubMed  CAS  Google Scholar 

  34. Chesnoy, S., Huang, L.: Enhanced cutaneous gene delivery following intradermal injection of naked DNA in a high ionic strength solution. Mol. Ther. 5(1), 57–62 (2002)

    Article  PubMed  CAS  Google Scholar 

  35. Gothelf, A., Mahmood, F., Dagnaes-Hansen, F., Gehl, J.: Efficacy of transgene expression in porcine skin as a function of electrode choice. Bioelechemistry 82(2), 95–102 (2011)

    Article  CAS  Google Scholar 

  36. Andre, F.M., Gehl, J., Sersa, G., et al.: Efficiency of High- and Low-Voltage Pulse Combinations for Gene Electrotransfer in Muscle, Liver, Tumor, and Skin. Hum. Gene Ther. 19(11), 1261–1272 (2008)

    Article  PubMed  CAS  Google Scholar 

  37. Drabick, J.J., Glasspool-Malone, J., King, A., Malone, R.W.: Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization. Mol. Ther. 3(2), 249–255 (2001)

    Article  PubMed  CAS  Google Scholar 

  38. Heller, L.C., Jaroszeski, M.J., Coppola, D., Heller, R.: Comparison of electrically mediated and liposome-complexed plasmid DNA delivery to the skin. Genet. Vaccines Ther. 6, 16 (2008)

    Article  PubMed  Google Scholar 

  39. Heller, R., Schultz, J., Lucas, M.L., et al.: Intradermal delivery of interleukin-12 plasmid DNA by in vivo electroporation. DNA Cell Biol. 20(1), 21–26 (2001)

    Article  PubMed  CAS  Google Scholar 

  40. Daud, A.I., DeConti, R.C., Andrews, S., et al.: Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J. Clin. Oncol. 26(36), 5896–5903 (2008)

    PubMed  CAS  Google Scholar 

  41. Gothelf, A., Eriksen, J., Hojman, P., Gehl, J.: Duration and level of transgene expression after gene electrotransfer to skin in mice. Gene Ther. 17(7), 839–845 (2010)

    Article  PubMed  CAS  Google Scholar 

  42. European Standard EN60601-1: Medical Electrical Equipment – Part 1: General Requirements for Basic Safety and Essential Performance, 3rd edn. British Standards Institution, London (2007)

    Google Scholar 

  43. Bertacchini, C., et al.: Design of an irreversible electroporation system for clinical use. Technol Cancer Res Treat 6(4), 313–320 (2007)

    PubMed  Google Scholar 

  44. Rebersek, M., Miklavcic, D.: Advantages and disadvantages of different concepts of electroporation pulse generation. ATKAFF 52, 12–19 (2011)

    Google Scholar 

  45. Puc, M., Rebersek, S., Miklavcic, D.: Requirements for a clinical electrochemotherapy device – electroporator. Radiol. Oncol. 31, 368–373 (1997)

    Google Scholar 

  46. Murakami, T., Nishi, T., Kimura, E., Goto, T., Maeda, Y., Ushio, Y., Uchino, M., Sunada, Y.: Full-length dystrophin cDNA transfer into skeletal muscle of adult mdx mice by electroporation. Muscle Nerve 27(2), 237–241 (2003)

    Article  PubMed  CAS  Google Scholar 

  47. Rosati, M., et al.: Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation. Vaccine 26(40), 5223–5229 (2008)

    Article  PubMed  CAS  Google Scholar 

  48. Payen, E., Bettan, M., Rouyer-Fessard, P., Beuzard, Y., Scherman, D.: Improvement of mouse beta-thalassemia by electrotransfer of erythropoietin cDNA. Exp. Hematol. 29(3), 295–300 (2001)

    Article  PubMed  CAS  Google Scholar 

  49. Long, Y.C., Jaichandran, S., Ho, L.P., Tien, S.L., Tan, S.Y., Kon, O.L.: FVIII gene delivery by muscle electroporation corrects murine hemophilia A. J. Gene Med. 7(4), 494–505 (2005)

    Article  PubMed  CAS  Google Scholar 

  50. Zhang, G.H., et al.: Gene expression and antitumor effect following im electroporation delivery of human interferon alpha 2 gene. Acta Pharmacol. Sin. 24(9), 891–896 (2003)

    PubMed  CAS  Google Scholar 

  51. Trochon-Joseph, V., et al.: Evidence of antiangiogenic and antimetastatic activities of the recombinant disintegrin domain of metargidin. Cancer Res. 64, 2062–2069 (2004)

    Article  PubMed  CAS  Google Scholar 

  52. ClinicalTrial.gov. US. National Institute of Health. www.clinicaltrials.gov (2012)

  53. Tuting, T., Storkus, W.J., Falo Jr., L.D.: DNA immunization targeting the skin: molecular control of adaptive immunity. J. Invest. Dermatol. 111(2), 183–188 (1998)

    Article  PubMed  CAS  Google Scholar 

  54. Medi, B.M., Hoselton, S., Marepalli, R.B., Singh, J.: Skin targeted DN vaccine delivery using electroporation in rabbits. I: efficacy. Int. J. Pharm. 294(1–2), 53–63 (2005)

    Article  PubMed  CAS  Google Scholar 

  55. Hirao, L.A., Wu, L., Khan, A.S., Satishchandran, A., Draghia-Akli, R., Weiner, D.B.: Intradermal/subcutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques. Vaccine 26(3), 440–448 (2008)

    Article  PubMed  CAS  Google Scholar 

  56. Liu, M.A.: DNA vaccines: a review. J. Intern. Med. 253(4), 402–410 (2003)

    Article  PubMed  CAS  Google Scholar 

  57. Peruzzi, D., et al.: A vaccine targeting telomerase enhances survival of dogs affected by B-cell lymphoma. Mol. Ther. 18, 1559–1567 (2010)

    Article  PubMed  CAS  Google Scholar 

  58. Rune, K., Torunn, E.T., Dag, K., Jacob, M.: Clinical evaluation of pain and muscle damage induced by electroporation of skeletal muscle in humans abstract from American Society of Gene Therapy 7th annual meeting. June 2–6, 2004 Minneapolis, Minnesota, USA. Mol. Ther. 9(Supp 1), S1–S435 (2004)

    Google Scholar 

  59. Glasspool-Malone, J., Drabick, J.J., Somiari, S., Malone, R.W.: Efficient nonviral cutaneous transfection. Mol. Ther. 2, 140–146 (2000)

    Article  PubMed  CAS  Google Scholar 

  60. Byrnes, C.K., et al.: Electroporation enhances transfection efficiency in murine cutaneous wounds. Wound Repair Regen. 12, 397–403 (2004)

    Article  PubMed  Google Scholar 

  61. Marti, G., et al.: Electroporative transfection with KGF-1 DNA improves wound healing in a diabetic mouse model. Gene Ther. 11, 1780–1785 (2004)

    Article  PubMed  CAS  Google Scholar 

  62. Lin, M.P., et al.: Delivery of plasmid DNA expression vector for keratinocyte growth factor-1 using electroporation to improve cutaneous wound healing in a septic rat model. Wound Repair Regen. 14, 618–624 (2006)

    Article  PubMed  Google Scholar 

  63. Roos, A.K., et al.: Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation. Mol. Ther. 13, 320–327 (2006)

    Article  PubMed  CAS  Google Scholar 

  64. Kang, J.H., Toita, R., Niidome, T., Katayama, Y.: Effective delivery of DNA into tumor cells and tissues by electroporation of polymer- DNA complex. Cancer Lett. 265, 281–288 (2008)

    Article  PubMed  CAS  Google Scholar 

  65. Liu, L., et al.: Age-dependent impairment of HIF-1alpha expression in diabetic mice: correction with electroporation-facilitated gene therapy increases wound healing, angiogenesis, and circulating angiogenic cells. J. Cell. Physiol. 217, 319–327 (2008)

    Article  PubMed  CAS  Google Scholar 

  66. Ferraro, B., Cruz, Y.L., Coppola, D., Heller, R.: Intradermal delivery of plasmid VEGF(165) by electroporation promotes wound healing. Mol. Ther. 17, 651–657 (2009)

    Article  PubMed  CAS  Google Scholar 

  67. Brave, A., et al.: Late administration of plasmid DNA by intradermal electroporation efficiently boosts DNA-primed T and B cell responses to carcinoembryonic antigen. Vaccine 27, 3692–3696 (2009)

    Article  PubMed  CAS  Google Scholar 

  68. Lladser, A., et al.: Intradermal DNA electroporation induces survivin-specific CTLs, suppresses angiogenesis and confers protection against mouse melanoma. Cancer Immunol. Immunother. 59, 81–92 (2009)

    Article  PubMed  Google Scholar 

  69. Roos, A.K., Eriksson, F., Walters, D.C., Pisa, P., King, A.D.: Optimization of skin electroporation in mice to increase tolerability of DNA vaccine delivery to patients. Mol. Ther. 17, 1637–1642 (2009)

    Article  PubMed  CAS  Google Scholar 

  70. Titomirov, A.V., Sukharev, S., Kistanova, E.: In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim. Biophys. Acta 1088, 131–134 (1991)

    Article  PubMed  CAS  Google Scholar 

  71. Lucas, M.L., Jaroszeski, M.J., Gilbert, R., Heller, R.: In vivo electroporation using an exponentially enhanced pulse: a new waveform. DNA Cell Biol. 20, 183–188 (2001)

    Article  PubMed  CAS  Google Scholar 

  72. Pavselj, N., Preat, V.: DNA electrotransfer into the skin using a combination of one high- and one low-voltage pulse. J. Control. Release 106, 407–415 (2005)

    Article  PubMed  CAS  Google Scholar 

  73. Maruyama, H., et al.: Skin-targeted gene transfer using in vivo electroporation. Gene Ther. 8, 1808–1812 (2001)

    Article  PubMed  CAS  Google Scholar 

  74. Zhang, L., Nolan, E., Kreitschitz, S., Rabussay, D.P.: Enhanced delivery of naked DNA to the skin by non-invasive in vivo electroporation. Biochim. Biophys. Acta 1572, 1–9 (2002)

    Article  PubMed  CAS  Google Scholar 

  75. Lee, P.Y., Chesnoy, S., Huang, L.: Electroporatic delivery of TGFbeta1 gene works synergistically with electric therapy to enhance diabetic wound healing in db/db mice. J. Invest. Dermatol. 123, 791–798 (2004)

    Article  PubMed  CAS  Google Scholar 

  76. Thanaketpaisarn, O., Nishikawa, M., Yamashita, F., Hashida, M.: Tissue- specific characteristics of in vivo electric gene: transfer by tissue and intravenous injection of plasmid DNA. Pharm. Res. 22, 883–891 (2005)

    Article  PubMed  CAS  Google Scholar 

  77. Heller, L.C., et al.: Optimization of cutaneous electrically mediated plasmid DNA delivery using novel electrode. Gene Ther. 14, 275–280 (2007)

    Article  PubMed  CAS  Google Scholar 

  78. Vandermeulen, G., et al.: Optimisation of intradermal DNA electrotransfer for immunisation. J. Control. Release 124, 81–87 (2007)

    Article  PubMed  CAS  Google Scholar 

  79. Vandermeulen, G., et al.: Skin-specific promoters for genetic immunisation by DNA electroporation. Vaccine 27, 4272–4277 (2009)

    Article  PubMed  CAS  Google Scholar 

  80. Vandermeulen, G., et al.: Effect of tape stripping and adjuvants on immune response after intradermal DNA electroporation. Pharm. Res. 26, 1745–1751 (2009)

    Article  PubMed  CAS  Google Scholar 

  81. Gothelf, A., Hojman, P., Gehl, J.: Therapeutic levels of erythropoietin (EPO) achieved after gene electrotransfer to skin in mice. Gene Ther. (2010). doi:10.1038/gt.2010.46

    Google Scholar 

  82. Ho, S.H., et al.: Protection against collagen-induced arthritis by electrotransfer of an expression plasmid for the interleukin 4. Biochem. Biophys. Res. Commun. 321, 759–766 (2004)

    Article  PubMed  CAS  Google Scholar 

  83. Cukjati, D., Batiuskaite, D., André, F., Miklavcic, D., Mir, L.M.: Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry 70, 501–507 (2007)

    Article  PubMed  CAS  Google Scholar 

  84. Hojman, P., et al.: Physiological effects of high- and low-voltage pulse combinations for gene electrotransfer in muscle. Hum. Gene Ther. 19, 1249–1260 (2008)

    Article  PubMed  CAS  Google Scholar 

  85. Hojman, P., Zibert, J.R., Gissel, H., Eriksen, J., Gehl, J.: Gene expression profiles in skeletal muscle after gene electrotransfer. BMC Mol. Biol. 8, 56 (2007)

    Article  PubMed  Google Scholar 

  86. Jeong, J.G., et al.: Electrotransfer of human IL-1Ra into skeletal muscles reduces the incidence of murine collagen-induced arthritis. J. Gene Med. 6, 1125–1133 (2004)

    Article  PubMed  CAS  Google Scholar 

  87. Abruzzese, R.V., et al.: Ligand-dependent regulation of vascular endothelial growth factor and erythropoietin expression by a plasmid-based autoinducible gene-switch system. Mol. Ther. 2, 276–287 (2000)

    Article  PubMed  CAS  Google Scholar 

  88. Bettan, M., et al.: High level protein secretion into blood circulation after electric pulse-mediated gene transfer into skeletal muscle. Mol. Ther. 2, 204–210 (2000)

    Article  PubMed  CAS  Google Scholar 

  89. Aihara, H., Miyazaki, J.: Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16, 867–870 (1998)

    Article  PubMed  CAS  Google Scholar 

  90. Scheerlinck, J.P., et al.: In vivo electroporation improves immune responses to DNA vaccination in sheep. Vaccine 22, 1820–1825 (2004)

    Article  PubMed  CAS  Google Scholar 

  91. Terada, Y., et al.: Efficient and ligand-dependent regulated erythropoietin production by naked dna injection and in vivo electroporation. Am. J. Kidney Dis. 38, S50–S53 (2001)

    Article  PubMed  CAS  Google Scholar 

  92. Tone, C.M., Cardoza, D.M., Carpenter, R.H., Draghia-Akli, R.: Long-term effects of plasmid-mediated growth hormone releasing hormone in dogs. Cancer Gene Ther. 11, 389–396 (2004)

    Article  PubMed  CAS  Google Scholar 

  93. Wu, C.J., Lee, S.C., Huang, H.W., Tao, M.H.: In vivo electroporation of skeletal muscles increases the efficacy of Japanese encephalitis virus DNA vaccine. Vaccine 22, 1457–1464 (2004)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Ronchetti BSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ronchetti, M., Battista, M., Bertacchini, C., Cadossi, R. (2014). Electroporation-Based Gene Transfer. In: Giese, M. (eds) Molecular Vaccines. Springer, Cham. https://doi.org/10.1007/978-3-319-00978-0_23

Download citation

Publish with us

Policies and ethics