Skip to main content

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 348))

  • 7436 Accesses

Abstract

This chapter is a brief investigation of the links between optimal transportation methods and functional inequalities in the Markov operator framework of this monograph. After a brief introduction to the basic material on optimal transportation, the main topic of transportation cost inequalities and first examples for Gaussian measures are presented. Interpolation along the geodesics of optimal transport is used towards logarithmic Sobolev inequalities and transportation cost inequalities comparing relative entropy and Wasserstein distances between probability measures. An alternate approach to sharp Sobolev or Gagliardo–Nirenberg inequalities in Euclidean space is provided next along these lines. Non-linear Hamilton–Jacobi equations and hypercontractivity properties of their solutions, analogous to the ones for linear heat equations, are investigated in the further sections towards the relationships between (quadratic) transportation cost inequalities and logarithmic Sobolev inequalities. Contraction properties in Wasserstein space along with the heat semigroup are investigated in the Markov operator setting. The last section is a very brief overview of recent developments towards a notion of Ricci curvature lower bounds based on optimal transportation and the connection with the Γ-calculus developed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. M. Agueh, N. Ghoussoub, X. Kang, Geometric inequalities via a general comparison principle for interacting gases. Geom. Funct. Anal. 14(1), 215–244 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. Lectures in Mathematics ETH Zürich (Birkhäuser, Basel, 2008)

    MATH  Google Scholar 

  3. L. Ambrosio, N. Gigli, G. Savaré, Bakry-Emery curvature-dimension condition and Riemannian Ricci curvature bounds. Preprint, 2012

    Google Scholar 

  4. L. Ambrosio, N. Gigli, G. Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below. Preprint, 2012

    Google Scholar 

  5. L. Ambrosio, N. Gigli, G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. (2013). doi:10.1007/s00222-013-0456-1

    Google Scholar 

  6. D. Bakry, F. Bolley, I. Gentil, Dimension dependent hypercontractivity for Gaussian kernels. Probab. Theory Relat. Fields 154(3), 845–874 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Bakry, I. Gentil, M. Ledoux, On Harnack inequalities and optimal transportation. Ann. Sc. Norm. Sup. Pisa (2012). doi:10.2422/2036-2145.201210_007

    Google Scholar 

  8. Z.M. Balogh, A. Engulatov, L. Hunziker, O.E. Maasalo, Functional inequalities and Hamilton–Jacobi equations in geodesic spaces. Potential Anal. 36(2), 317–337 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 17 (Springer, Paris, 1994)

    MATH  Google Scholar 

  10. W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. Math. (2) 138(1), 213–242 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Blower, The Gaussian isoperimetric inequality and transportation. Positivity 7(3), 203–224 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. S.G. Bobkov, I. Gentil, M. Ledoux, Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pures Appl. 80(7), 669–696 (2001)

    MATH  MathSciNet  Google Scholar 

  13. S.G. Bobkov, F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163(1), 1–28 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Bolley, I. Gentil, A. Guillin, Dimensional contraction via Markov transportation distance. Preprint, 2013

    Google Scholar 

  15. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. L.A. Caffarelli, Boundary regularity of maps with convex potentials. II. Ann. Math. (2) 144(3), 453–496 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. L.A. Caffarelli, A priori estimates and the geometry of the Monge Ampère equation, in Nonlinear Partial Differential Equations in Differential Geometry, Park City, UT, 1992. IAS/Park City Math. Ser., vol. 2. (Amer. Math. Soc., Providence, 1996), pp. 5–63

    Google Scholar 

  18. L.A. Caffarelli, Monotonicity properties of optimal transportation and the FKG and related inequalities. Commun. Math. Phys. 214(3), 547–563 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Cannarsa, C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, vol. 58 (Birkhäuser, Boston, 2004)

    MATH  Google Scholar 

  20. J.A. Carrillo, R.J. McCann, C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19(3), 971–1018 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. J.A. Carrillo, R.J. McCann, C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179, 217–263 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. P. Cattiaux, A. Guillin, On quadratic transportation cost inequalities. J. Math. Pures Appl. 86(4), 341–361 (2006)

    MathSciNet  Google Scholar 

  23. M.-F. Chen, Trilogy of couplings and general formulas for lower bound of spectral gap, in Probability Towards 2000, New York, 1995. Lecture Notes in Statist., vol. 128 (Springer, New York, 1998), pp. 123–136

    Chapter  Google Scholar 

  24. M.-F. Chen, F.-Y. Wang, Application of coupling method to the first eigenvalue on manifold. Prog. Nat. Sci. 5(2), 227–229 (1995)

    Google Scholar 

  25. D. Cordero-Erausquin, Some applications of mass transport to Gaussian-type inequalities. Arch. Ration. Mech. Anal. 161(3), 257–269 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Cordero-Erausquin, W. Gangbo, C. Houdré, Inequalities for generalized entropy and optimal transportation, in Recent Advances in the Theory and Applications of Mass Transport. Contemp. Math., vol. 353 (Am. Math. Soc., Providence, 2004), pp. 73–94

    Chapter  Google Scholar 

  27. D. Cordero-Erausquin, R.J. McCann, M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146(2), 219–257 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. D. Cordero-Erausquin, R.J. McCann, M. Schmuckenschläger, Prékopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport. Ann. Fac. Sci. Toulouse 15(4), 613–635 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. D. Cordero-Erausquin, B. Nazaret, C. Villani, A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182(2), 307–332 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Del Pino, J. Dolbeault, The optimal Euclidean L p-Sobolev logarithmic inequality. J. Funct. Anal. 197(1), 151–161 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Erbar, The heat equation on manifolds as a gradient flow in the Wasserstein space. Ann. Inst. Henri Poincaré Probab. Stat. 46(1), 1–23 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Erbar, K. Kuwada, K.-T. Sturm, On the equivalence of the entropy curvature-dimension condition and Bochner’s inequality on metric measure spaces. Preprint, 2013

    Google Scholar 

  33. J.F. Escobar, Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37(3), 687–698 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  34. L.C. Evans, Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, 2010)

    MATH  Google Scholar 

  35. L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics (CRC Press, Boca Raton, 1992)

    MATH  Google Scholar 

  36. Y. Fujita, An optimal logarithmic Sobolev inequality with Lipschitz constants. J. Funct. Anal. 261(5), 1133–1144 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  37. I. Gentil, Ultracontractive bounds on Hamilton-Jacobi solutions. Bull. Sci. Math. 126(6), 507–524 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. I. Gentil, The general optimal L p-Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations. J. Funct. Anal. 202(2), 591–599 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  39. N. Gozlan, A characterization of dimension free concentration in terms of transportation inequalities. Ann. Probab. 37(6), 2480–2498 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. N. Gozlan, Transport-entropy inequalities on the line. Electron. J. Probab. 17(49), 1–18 (2012)

    MathSciNet  Google Scholar 

  41. N. Gozlan, C. Léonard, A large deviation approach to some transportation cost inequalities. Probab. Theory Relat. Fields 139(1–2), 235–283 (2007)

    Article  MATH  Google Scholar 

  42. N. Gozlan, C. Léonard, Transport inequalities. A survey. Markov Process. Relat. Fields 16, 635–736 (2010)

    MATH  Google Scholar 

  43. N. Gozlan, C. Roberto, P.-M. Samson, From concentration to logarithmic Sobolev and Poincaré inequalities. J. Funct. Anal. 260(5), 1491–1522 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. N. Gozlan, C. Roberto, P.-M. Samson, Hamilton Jacobi equations on metric spaces and transport entropy inequalities. Rev. Mat. Iberoam. (2013, to appear)

    Google Scholar 

  45. N. Gozlan, C. Roberto, P.-M. Samson, Characterization of Talagrand’s transport-entropy inequality in metric spaces. Ann. Probab. 41(5), 3112–3139 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  46. R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  47. H. Knothe, Contributions to the theory of convex bodies. Mich. Math. J. 4, 39–52 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  48. M. Knott, C.S. Smith, On the optimal mapping of distributions. J. Optim. Theory Appl. 43(1), 39–49 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  49. K. Kuwada, Duality on gradient estimates and Wasserstein controls. J. Funct. Anal. 258(11), 3758–3774 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  50. K. Kuwada, Space-time Wasserstein controls and Bakry-Ledoux type gradient estimates. Preprint, 2013

    Google Scholar 

  51. M. Ledoux, The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol. 89 (American Mathematical Society, Providence, 2001)

    MATH  Google Scholar 

  52. J. Lott, C. Villani, Hamilton-Jacobi semigroup on length spaces and applications. J. Math. Pures Appl. 88(3), 219–229 (2007)

    MATH  MathSciNet  Google Scholar 

  53. J. Lott, C. Villani, Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  54. F. Maggi, C. Villani, Balls have the worst best Sobolev inequalities. II. Variants and extensions. Calc. Var. Partial Differ. Equ. 31(1), 47–74 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  55. K. Marton, Bounding \(\overline{d}\)-distance by informational divergence: a method to prove measure concentration. Ann. Probab. 24(2), 857–866 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  56. R.J. McCann, Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80(2), 309–323 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  57. R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  58. V.D. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces. Lecture Notes in Mathematics, vol. 1200 (Springer, Berlin, 1986). With an appendix by M. Gromov

    MATH  Google Scholar 

  59. B. Nazaret, Best constant in Sobolev trace inequalities on the half-space. Nonlinear Anal. 65(10), 1977–1985 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  60. F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  61. F. Otto, C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  62. F. Otto, M. Westdickenberg, Eulerian calculus for the contraction in the Wasserstein distance. SIAM J. Math. Anal. 37(4), 1227–1255 (2005) (electronic)

    Article  MathSciNet  Google Scholar 

  63. S.T. Rachev, Probability Metrics and the Stability of Stochastic Models. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics (Wiley, Chichester, 1991)

    MATH  Google Scholar 

  64. S.T. Rachev, L. Rüschendorf, Mass Transportation Problems. Vol. I. Probability and Its Applications (New York) (Springer, New York, 1998). Theory

    Google Scholar 

  65. S.T. Rachev, L. Rüschendorf, Mass Transportation Problems. Vol. II. Probability and Its Applications (New York) (Springer, New York, 1998). Applications

    Google Scholar 

  66. L. Rüschendorf, S.T. Rachev, A characterization of random variables with minimum L 2-distance. J. Multivar. Anal. 32(1), 48–54 (1990)

    Article  MATH  Google Scholar 

  67. K.-T. Sturm, On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  68. K.-T. Sturm, On the geometry of metric measure spaces. II. Acta Math. 196(1), 133–177 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  69. M. Talagrand, Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6(3), 587–600 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  70. H. Tanaka, An inequality for a functional of probability distributions and its application to Kac’s one-dimensional model of a Maxwellian gas. Z. Wahrscheinlichkeitstheor. Verw. Geb. 27, 47–52 (1973)

    Article  MATH  Google Scholar 

  71. H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrscheinlichkeitstheor. Verw. Geb. 46(1), 67–105 (1978/79)

    Article  Google Scholar 

  72. C. Villani, Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58 (American Mathematical Society, Providence, 2003)

    MATH  Google Scholar 

  73. C. Villani, Optimal Transport, old and new. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338 (Springer, Berlin, 2009)

    Book  MATH  Google Scholar 

  74. M.-K. von Renesse, K.-T. Sturm, Transport inequalities, gradient estimates, entropy, and Ricci curvature. Commun. Pure Appl. Math. 58(7), 923–940 (2005)

    Article  MATH  Google Scholar 

  75. F.-Y. Wang, Functional Inequalities, Markov Processes, and Spectral Theory (Science Press, Beijing, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bakry, D., Gentil, I., Ledoux, M. (2014). Optimal Transportation and Functional Inequalities. In: Analysis and Geometry of Markov Diffusion Operators. Grundlehren der mathematischen Wissenschaften, vol 348. Springer, Cham. https://doi.org/10.1007/978-3-319-00227-9_9

Download citation

Publish with us

Policies and ethics