Advertisement

Non-extremal Black Holes from the Generalised R-map

  • Thomas Mohaupt
  • Owen Vaughan
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 144)

Abstract

We review the timelike dimensional reduction of a class of five-dimensional theories that generalises \(5D,\;\mathcal{{N}} = 2\) supergravity coupled to vector multiplets. As an application we construct instanton solutions to the four-dimensional Euclidean theory, and investigate the criteria for solutions to lift to static non-extremal black holes in five dimensions. We focus specifically on two classes of models: STU-like models, and models with a block diagonal target space metric. For STU-like models the second order equations of motion of the four-dimensional theory can be solved explicitly, and we obtain the general solution. For block diagonal models we find a restricted class of solutions, where the number of independent scalar fields depends on the number of blocks. When lifting these solutions to five dimensions we show, by explicit calculation, that one obtains static non-extremal black holes with scalar fields that take finite values on the horizon only if the number of integration constants reduces by exactly half.

Keywords

Black Hole Scalar Field Black Hole Solution Vector Multiplet Instanton Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work of T.M. is supported in part by STFC grant ST/G00062X/1. The work of O.V. is supported by an STFC studentship and DAAD.

References

  1. 1.
    S. Ferrara, R. Kallosh, A. Strominger, N=2 extremal black holes. Phys. Rev. D 52, 5412 (1995). hep-th/9508072Google Scholar
  2. 2.
    A. Strominger, C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99 (1996). hep-th/9601029Google Scholar
  3. 3.
    J. M. Maldacena, A. Strominger, E. Witten, JHEP 9712, 002 (1997). [hep-th/9711053]Google Scholar
  4. 4.
    C. Vafa, Black holes and Calabi-Yau threefolds. Adv. Theor. Math. Phys. 2, 207 (1998). [hep-th/9711067]MathSciNetzbMATHGoogle Scholar
  5. 5.
    G. Lopes Cardoso, B. de Wit, T. Mohaupt, Corrections to macroscopic supersymmetric black hole entropy. Phys. Lett. B 451, 309 (1999). [hep-th/9812082]MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    C.G. Callan, J.M. Maldacena, D-brane approach to black hole quantum mechanics. Nucl. Phys. B 472, 591 (1996). hep-th/9602043Google Scholar
  7. 7.
    G.T. Horowitz, A. Strominger, Counting states of near-extremal black holes. Phys. Rev. Lett. 77, 2368 (1996). hep-th/9602051Google Scholar
  8. 8.
    M. Cvetic, D. Youm, Entropy of non-extreme charged rotating black holes in string theory. Phys. Rev. D 54, 2612 (1996). hep-th/9603147Google Scholar
  9. 9.
    J.M. Maldacena, A. Strominger, Black hole greybody factors and D-brane spectroscopy. Phys. Rev. D 55, 861 (1997). hep-th/9609026Google Scholar
  10. 10.
    K. Behrndt, M. Cvetic, W.A. Sabra, The entropy of near-extreme N=2 black holes. Phys. Rev. D 58, 084018 (1998). hep-th/9712221Google Scholar
  11. 11.
    S. Cecotti, S. Ferrara, L. Girardello, Geometry of type II superstrings and the moduli of superconformal field theories. Int. J. Mod. Phys. A 4, 2475 (1989)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    S. Ferrara, S. Sabharwal, Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces. Nucl. Phys. B 332, 317 (1990)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    B. de Wit, A. Van Proeyen, Special geometry, cubic polynomials and homogeneous quaternionic spaces. Commun. Math. Phys. 149, 307 (1992). [hep-th/9112027]ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    B. de Wit, A. Van Proeyen, Isometries of special manifolds. (1995). hep-th/9505097Google Scholar
  15. 15.
    M. Gunaydin, A. Neitzke, B. Pioline, A. Waldron, BPS black holes, quantum attractor flows and automorphic forms. Phys. Rev. D 73, 084019 (2006). [hep-th/0512296]MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    G. Bossard, H. Nicolai, K.S. Stelle, Universal BPS structure of stationary supergravity solutions. JHEP 0907, 003 (2009). [arXiv:0902.4438 [hep-th]]MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    W. Chemissany, J. Rosseel, M. Trigiante, T. Van Riet, The Full integration of black hole solutions to symmetric supergravity theories. Nucl. Phys. B 830, 391 (2010). [arXiv:0903.2777 [hep-th]]ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    G. Bossard, Y. Michel, B. Pioline, Extremal black holes, nilpotent orbits and the true fake superpotential. JHEP 1001, 038 (2010). [arXiv:0908.1742 [hep-th]]MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    M. Azreg-Ainou, G. Clement, D.V. Gal’tsov, All extremal instantons in Einstein-Maxwell-dilaton-axion theory. Phys. Rev. D 84, 104042 (2011). [arXiv:1107.5746 [hep-th]]ADSCrossRefGoogle Scholar
  20. 20.
    V. Cortés, J. Louis, P. Smyth, H. Triendl, On certain Kähler quotients of quaternionic Kähler manifolds. (2011). arXiv:1111.0679 [math.DG]Google Scholar
  21. 21.
    T. Mohaupt, O. Vaughan, The Hesse potential, the c-map and black hole solutions. JHEP 1207, 163 (2012). [arXiv:1112.2876 [hep-th]]MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    S. Alexandrov, c-map as c=1 string. Nucl. Phys. B 863, 329 (2012). [arXiv:1201.4392 [hep-th]]MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    D.V. Alekseevsky, V. Cortés, T. Mohaupt, Conification of Kähler and hyper-Kähler manifolds. (2012). arXiv:1205.2964 [math.DG]Google Scholar
  24. 24.
    S.S. Yazadjiev, Generating dyonic solutions in 5D Einstein-dilaton gravity with antisymmetric forms and dyonic black rings. Phys. Rev. D 73, 124032 (2006). [hep-th/0512229]ADSCrossRefGoogle Scholar
  25. 25.
    D. Gaiotto, W. Li, M. Padi, Non-Supersymmetric Attractor Flow in Symmetric Spaces. JHEP 0712, 093 (2007). [arXiv:0710.1638 [hep-th]]MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    B. Janssen, P. Smyth, T. Van Riet, B. Vercnocke, A first-order formalism for timelike and spacelike brane solutions. JHEP 04, 007 (2008). arXiv:0712.2808Google Scholar
  27. 27.
    J. Perz, P. Smyth, T. Van Riet, B. Vercnocke, First-order flow equations for extremal and non-extremal black holes. JHEP 0903, 150 (2009). arXiv:0810.1528Google Scholar
  28. 28.
    P. Breitenlohner, D. Maison, G.W. Gibbons, Four-dimensional black holes from Kaluza-Klein theories. Commun. Math. Phys. 120, 295 (1988)MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    T. Mohaupt, O. Vaughan, Non-extremal black holes, harmonic functions, and attractor equations. Class. Quant. Grav. 27, 235008 (2010). [arXiv:1006.3439 [hep-th]]MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    T. Mohaupt, K. Waite, Instantons, black holes and harmonic functions. JHEP 0910, 058 (2009). [arXiv:0906.3451 [hep-th]]MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    H. Lu, C.N. Pope, J.F. Vazquez-Poritz, From AdS black holes to supersymmetric flux branes. Nucl. Phys. B 709, 47 (2005). hep-th/0307001Google Scholar
  32. 32.
    C.M. Miller, K. Schalm, E.J. Weinberg, Nonextremal black holes are BPS. Phys. Rev. D 76, 044001 (2007). hep-th/0612308Google Scholar
  33. 33.
    M.R. Garousi, A. Ghodsi, On attractor mechanism and entropy function for non-extremal black holes. JHEP 05, 043 (2007). hep-th/0703260Google Scholar
  34. 34.
    L. Andrianopoli, R. D’Auria, E. Orazi, First order description of black holes in moduli space. JHEP 11, 032 (2007). arXiv:0706.0712Google Scholar
  35. 35.
    G.L. Cardoso, V. Grass, On five-dimensional non-extremal charged black holes and FRW cosmology. Nucl. Phys. B 803, 209 (2008). arXiv:0803.2819Google Scholar
  36. 36.
    M. Gunaydin, G. Sierra, P.K. Townsend, The geometry of N=2 Maxwell-Einstein supergravity and Jordan algebras. Nucl. Phys. B 242, 244 (1984)MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    V. Cortes, T. Mohaupt, H. Xu, Completeness in supergravity constructions. (2011). arXiv:1101.5103 [hep-th]Google Scholar
  38. 38.
    D. V. Alekseevsky, V. Cortes, Geometric construction of the r-map: from affine special real to special Kähler manifolds. Comm. Math. Phys. 291, 579–590 (2009). [arXiv:0811.1658 [math.DG]]Google Scholar
  39. 39.
    T. Mohaupt, O. Vaughan, Developments in special geometry. J. Phys. Conf. Ser. 343, 012078 (2012). [arXiv:1112.2873 [hep-th]]ADSCrossRefGoogle Scholar
  40. 40.
    G.W. Gibbons, P. Rychenkova, Cones, triSasakian structures and superconformal invariance. Phys. Lett. B 443, 138 (1998). [hep-th/9809158]MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    P. Meessen, T. Ortin, Non-extremal black holes of N=2, d=5 supergravity. Phys. Lett. B 707, 178 (2012). [arXiv:1107.5454 [hep-th]]MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    A. Ceresole, G. Dall’Agata, Flow equations for non-BPSextremal black holes. JHEP 0703, 110 (2007). [hep-th/0702088]MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    G. Lopes Cardoso, A. Ceresole, G. Dall’Agata, J.M. Oberreuter, J. Perz, First-order flow equations for extremal black holes in very special geometry. JHEP 0710, 063 (2007). [arXiv:0706.3373 [hep-th]]CrossRefGoogle Scholar
  44. 44.
    P. Galli, T. Ortin, J. Perz, C.S. Shahbazi, Non-extremal black holes of N=2, d=4 supergravity. JHEP 1107, 041 (2011). [arXiv:1105.3311 [hep-th]]MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    J. M. Maldacena, Black holes in string theory. (1996). hep-th/9607235Google Scholar
  46. 46.
    T. Mohaupt, O. Vaughan, to appearGoogle Scholar
  47. 47.
    S.S. Yazadjiev, Completely integrable sector in 5-D Einstein-Maxwell gravity and derivation of the dipole black ring solutions. Phys. Rev. D 73, 104007 (2006). [hep-th/0602116]MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    S.S. Yazadjiev, Solution generating in 5D Einstein-Maxwell-dilaton gravity and derivation of dipole black ring solutions. JHEP 0607, 036 (2006). [hep-th/0604140]MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    P. Meessen, T. Ortin, J. Perz, C. S. Shahbazi, Black holes and black strings of N=2, d=5 supergravity in the H-FGK formalism. (2012). arXiv:1204.0507 [hep-th]Google Scholar
  50. 50.
    P. Meessen, T. Ortin, J. Perz, C.S. Shahbazi, H-FGK formalism for black-hole solutions of N=2, d=4 and d=5 supergravity. Phys. Lett. B 709, 260 (2012). [arXiv:1112.3332 [hep-th]]MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    K. Behrndt, S. Forste, String Kaluza-Klein cosmology. Nucl. Phys. B 430, 441 (1994). [hep-th/9403179]MathSciNetADSzbMATHCrossRefGoogle Scholar
  52. 52.
    M. Gutperle, A. Strominger, Spacelike branes. JHEP 0204, 018 (2002). [hep-th/0202210]MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    D. Klemm, O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry. arXiv:1207.2679 [hep-th]Google Scholar
  54. 54.
    K. Behrndt, M. Cvetic, W.A. Sabra, Nonextreme black holes of five-dimensional N=2 AdS supergravity. Nucl. Phys. B 553, 317 (1999). [hep-th/9810227]MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations