Skip to main content

On Minimal Tilings with Convex Cells Each Containing a Unit Ball

  • Chapter
  • First Online:
Discrete Geometry and Optimization

Part of the book series: Fields Institute Communications ((FIC,volume 69))

  • 1544 Accesses

Abstract

We investigate the following problem that one can regard as a very close relative of the densest sphere packing problem. If the Euclidean 3-space is partitioned into convex cells each containing a unit ball, how should the shapes of the cells be designed to minimize the average edge curvature of the cells? In particular, we prove that the average edge curvature in question is always at least \(13.8564\ldots\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrus, G., Fodor, F.: A new lower bound on the surface area of a Voronoi polyhedron. Period. Math. Hungar. 53(1–2), 45–58 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Besicovitch, A.S., Eggleston, H.G.: The total length of the edges of a polyhedron. Q. J. Math. Oxford Ser. 2(8), 172–190 (1957)

    Article  MathSciNet  Google Scholar 

  3. Bezdek, K.: On a stronger form of Rogers’s lemma and the minimum surface area of Voronoi cells in unit ball packings. J. Reine Angew. Math. 518, 131–143 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Bezdek, K.: On rhombic dodecahedra. Contrib. Alg. Geom. 41(2), 411–416 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Bezdek, K.: A lower bound for the mean width of Voronoi polyhedra of unit ball packings in E 3. Arch. Math. 74(5), 392–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bezdek, K., Daróczy-Kiss, E.: Finding the best face on a Voronoi polyhedron – the strong dodecahedral conjecture revisited. Monatsh. Math. 145(3), 191–206 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dekster, B.V.: An extension of Jung’s theorem. Isr. J. Math. 50(3), 169–180 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fejes Tóth, L.: Regular Figures. Pergamon Press, New York (1964)

    MATH  Google Scholar 

  9. Hales, T.C.: A proof of the Kepler conjecture. Ann. Math. 162(3), 1065–1185 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hales, T.C., Ferguson, S.P.: A formulation of the Kepler conjecture. Discrete Comput. Geom. 36(1), 21–69 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hales, T.C.: Sphere packings III, extremal cases. Discrete Comput. Geom. 36(1), 71–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hales, T.C.: Sphere packings IV, detailed bounds. Discrete Comput. Geom. 36(1), 111–166 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hales, T.C.: Sphere packings VI, Tame graphs and linear programs. Discrete Comput. Geom. 36(1), 205–265 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hales, T.C.: Dense Sphere Packings. A Blueprint for Formal Proofs. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  15. Kertész, G.: On totally separable packings of equal balls. Acta Math. Hungar. 51(3–4), 363–364 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Morgan, F.: Geometric Measure Theory - A Beginner’s Guide. Elsevier – Academic Press, Amsterdam (2009)

    MATH  Google Scholar 

  17. Rogers, C.A.: Packing and Covering. Cambridge University Press, Cambridge (1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Károly Bezdek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bezdek, K. (2013). On Minimal Tilings with Convex Cells Each Containing a Unit Ball. In: Bezdek, K., Deza, A., Ye, Y. (eds) Discrete Geometry and Optimization. Fields Institute Communications, vol 69. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00200-2_4

Download citation

Publish with us

Policies and ethics