Skip to main content

X chromosome inactivation and DNA methylation

  • Chapter
DNA Methylation

Part of the book series: EXS ((EXS,volume 64))

Abstract

X chromosome inactivation (XCI) renders one of the two X chromosomes in female mammalian cells heterochromatin-like and genetically silent. This chromosome-wide phenomenon has long been considered a paradigm for the study of the effect of heterochromatinization and DNA methylation on gene expression in mammals (for reviews see Gartler and Riggs, 1983; Grant and Chapman, 1988; Lyon, 1988; Riggs, 1990b; Riggs and Pfeifer, 1992). The inactivation process is usually considered to consist of three components — initiation, spreading and maintenance. A role for DNA methylation is possible for all three of these processes, but most available information is relevant only to maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adler, D. A., West, J. D., and Chapman, V. M. (1977) Expression of alpha-galactosidase in preimplantation mouse embryos. Nature 267, 838–839.

    PubMed  CAS  Google Scholar 

  • Antequera, F., Macleod, D., and Bird, A. P. (1989) Specific protection of methylated CpGs in mammalian nuclei. Cell 58, 509–517.

    PubMed  CAS  Google Scholar 

  • Antequera, F., Boyes, J., and Bird, A. (1990) High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62, 503–514.

    PubMed  CAS  Google Scholar 

  • Ariel, M., McCarrey, J., and Cedar, H. (1991) Methylation patterns of testis-specific genes. Proc. Natl. Acad. Sci. USA 88, 2317–2321.

    PubMed  CAS  Google Scholar 

  • Baker, T. G. (1963) A quantitative and cytological study of germ cells in human ovaries. Proc. Roy. Soc. B. 158, 417–433.

    CAS  Google Scholar 

  • Bartlett, M. H., Adra, C. N., Park, J., Chapman, V. M., and McBurney, M. W. (1991) DNA methylation of two X chromosome genes in female somatic and embryonal carcinoma cells. Somatic Cell Mol. Genet. 17, 35–47.

    CAS  Google Scholar 

  • Bell, M. V., Hirst, M. C., Nakahori, Y., MacKinnon, R. N., Roche, A., Flint, T. J., Jacobs, P. A., Tommerup, N., Tranebjaerg, L., Froster-Iskenius, U., Kerr, B., Turner, G., Linden- baum, R. H., Winter, R., Pembrey, M., Thibodeau, S., and Davies, K. E. (1991) Physical mapping across the fragile X: hypermethylation and clinical expression of the fragile X syndrome. Cell 64, 861–866.

    PubMed  CAS  Google Scholar 

  • Bestor, T. H., and Ingram, V. M. (1983) Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc. Natl. Acad. Sci. USA 80, 5559–5563.

    PubMed  CAS  Google Scholar 

  • Bird, A. P. (1986) CpG-rich islands and the function of DNA methylation. Nature 321, 209–213.

    PubMed  CAS  Google Scholar 

  • Borden, J., and Manuelidis, L. (1988) Movement of the X chromosome in epilepsy. Science 242, 1687–1691.

    PubMed  CAS  Google Scholar 

  • Borsani, G., Tonlorenzi, R., Simmler, M. C., Dandolo, L., Arnaud, D., Capra, V., Grompe, M., Pizzuti, A., Muzny, D., Lawrence, C., Willard, H. F., Avner, P., and Ballabio, A. (1991) Characterization of a murine gene expressed from the inactive X chromosome. Nature 351, 325–329.

    PubMed  CAS  Google Scholar 

  • Boyes, J., and Bird, A. (1991) DNA methylation inhibits transcription indirectly via a Methyl-CpG Binding Protein. Cell 64, 1123–1134.

    PubMed  CAS  Google Scholar 

  • Boyes, J., and Bird, A. (1992) Repression of genes by methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EM BO J. 11, 327–333.

    PubMed  CAS  Google Scholar 

  • Brockdorff, N., Ashworth, A., Kay, G. F., Cooper, P., Smith, S., McCabe, V. M., Norris, D. P., Penny, G. D., Patel, D., and Rastan, S. (1991) Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351, 329–331.

    PubMed  CAS  Google Scholar 

  • Brown, S. D. M. (1991) XIST and the mapping of the X chromosome inactivation center. BioAssays 13, 607–611.

    CAS  Google Scholar 

  • Brown S., and Rastan, S. (1988) Age-related reactivation of an X-linked gene close to the inactivation centre in the mouse. Genet. Res. 52, 1512–1514.

    Google Scholar 

  • Brown, C. J., Ballabio, A., Rupert, J. L., Lafreniere, R. G., Grompe, M., Tonlorenzi, R., and Willard, H. F. (1991a) A gene from the region of the human X inactivation centre expressed exclusively from the inactive chromosome. Nature 349, 38–44.

    PubMed  CAS  Google Scholar 

  • Brown, C. J., Lafreniere, R. G., Powers, V. E., Sebastio, G., Ballabio, A., Pettigrew, A. L., Ledbetter, D. H., Levy, E., Craig, I. W., and Huntington, H. F. (1991b) Localization of the X inactivation centre on the human X chromosome in Xql3. Nature 349, 82–84.

    PubMed  CAS  Google Scholar 

  • Burhans, W. C., Vassilev, L. T., Caddie, M. S., Heintz, N. H., and DePamphilis, M. L. (1990) Identification of an origin of bidirectional DNA replication in mammalian chromosomes. Cell 62, 955–965.

    PubMed  CAS  Google Scholar 

  • Cattanach, B. M., and Papworth, D. (1981) Controlling elements in the mouse V. Linkage tests with X-linked genes. Genet. Res. Camb. 38, 57–70.

    CAS  Google Scholar 

  • Chaillet, J. R., Vogt, T. F., Beier, D. R., and Leder, P. (1991) Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell 66, 77–83.

    PubMed  CAS  Google Scholar 

  • Cooney, C. A., and Bradbury, E. M. (1990) DNA methylation and chromosome organization in eucaryotes, in: The Eukaryotic Nucleus: Molecular Biochemistry and Macromolecular Assemblies, pp. 813–843. Eds. P. R. Strauss and S. H. Wilson. Telford Press. Caldwell, NJ, USA.

    Google Scholar 

  • Cooney, C. A., Eykholt, R. L., and Bradbury, E. M. (1988) Methylation is coordinated on the putative replication origins of Physarum rDNA. J. Molec. Biol. 204, 889–901.

    PubMed  CAS  Google Scholar 

  • Drahovsky, D., and Pfeifer, G. P. (1988) Enzymology of DNA methylation in mammalian cells, in: Architecture of Eukaryotic Genes, pp 435–445. Ed. G. Kahl. VCH Verlags gesellschaft mbH, Weinheim.

    Google Scholar 

  • Driscoll, D. J., and Migeon, B. R. (1990) Sex difference in methylation of single-copy genes in human meiotic germ cells: Implications for X chromosome inactivation, parental imprinting, and origin of CpG mutations. Somatic Cell Mol. Genet. 16, 267–282.

    CAS  Google Scholar 

  • Dyer, K. A., Canfield, T. K., and Gartler, S. M. (1989) Cytogenet. Cell Genet. 50, 116.

    CAS  Google Scholar 

  • Engler, P., Haasch, D., Pinkert, C. A., Doglio, L., Glymour, M., Brinster, R., and Storb, U. (1991) A strain-specific modifier on mouse chromosome 4 controls the methylation of independent transgene loci. Cell 65, 939–947.

    PubMed  CAS  Google Scholar 

  • Epstein, C. J., Smith, S., Travis, B., and Tucker, G. (1978) Both X chromosomes function before visible X-chromosome inactivation in female mouse embryos. Nature 274, 500–502.

    PubMed  CAS  Google Scholar 

  • Fowlis, D. J., Ansel, J. D., and Micklem, H. S. (1991) Further evidence for the importance of parental source of the Xce allele in X chromosome inactivation. Genet. Res. 58, 63–65.

    PubMed  CAS  Google Scholar 

  • Frank, D., Keshet, I., Shani, M., Levine, A., Razin, A., and Cedar, H. (1991) Demethylation of CpG islands in embryonic cells. Nature 351, 239–241.

    PubMed  CAS  Google Scholar 

  • Fu, Y., Kuhl, D. P. A., Pizzuti, A., Pieretti, M., Sutcliffe, J. S., Richards, S., Verkerk, A. J. M. H., Holden, J. J. A., Fenwick, R. G., Warren, S. T., Oostra, B. A., Nelson, D. L., and Caskey, C. T. (1991) Variation of the CGG repeat at the fragile X site in genetic instability: Resolution of the Sherman paradox. Cell 67. 1047–1058.

    PubMed  CAS  Google Scholar 

  • Gamma-Sossa, M. A., Midgett, R. M., Slagel, V. A., Githens, S., Kuo, K. C., Gehrke, C. W., and Ehrlich, M. (1983) Tissue-specific differences in DNA methylation in various mammals. Biochim. Biophys. Acta 740, 212–219.

    Google Scholar 

  • Gartler, S. M., and Riggs, A. D. (1983) Mammalian X-chromosome inactivation. Ann. Rev. Genet. 17, 155–190.

    PubMed  CAS  Google Scholar 

  • Ghazi, H., Gonzales, F., and Jones, P. A. (1991) Methylation of CpG-island-containing genes in human sperm, fetal and adult tissues. Gene 114, 203–210.

    Google Scholar 

  • Grant, S. G., and Chapman, V. M. (1988) Mechanisms of X-chromosome regulation. Ann. Rev. Genet. 22, 199–233.

    PubMed  CAS  Google Scholar 

  • Grant, S. G., and Worton, R. G. (1989a) Activation of the Hprt gene on the inactive X chromosome in transformed diploid female Chinese hamster cells. J. Cell Sci. 92, 723–732.

    PubMed  CAS  Google Scholar 

  • Grant, S. G., and Worton, R. G. (1989b) Differential activation of the hprt gene on the inactive X chromosome in primary and transformed Chinese hamster cells. Mol. Cell. Biol. 9, 1635–1641.

    PubMed  CAS  Google Scholar 

  • Gregory, P., Greene, C., Shapira, E., and Wang, N. (1985) Alterations in the time of X chromosome replication induced by 5-azacytidine. Cytogenet. Cell Genet. 39, 234–236.

    PubMed  CAS  Google Scholar 

  • Groudine, M., and Conkin, K. F. (1985) Chromatin structure and de novo methylation of sperm DNA: implications for activation of the paternal genome. Science 228, 1061–1068.

    PubMed  CAS  Google Scholar 

  • Griinwald, S., and Pfeifer, G. P. (1989) Enzymatic DNA methylation. Progr. Clin. Biochem. Med. 9, 61–103.

    Google Scholar 

  • Handeli, S., Klar, A., Meuth, M., and Cedar, H. (1989) Mapping replication units in animal cells. Cell 57, 909–920.

    PubMed  CAS  Google Scholar 

  • Hansen, R. S., and Gartler, S. M. (1990) 5-Azacytidine-induced reactivation of the human X chromosome-linked PGK1 gene is associated with a large region of cytosine demethylation in the 5’ CpG island. Proc. Natl. Acad. Sci. USA 87, 4147–4178.

    Google Scholar 

  • Hansen, R. S., Ellis, N. A., and Gartler, S. M. (1988) Demethylation of specific sites in the 5’ region of the inactive X-linked human phosphoglycerate kinase gene correlates with the appearance of nuclease sensitivity and gene expression. Mol. Cell. Biol. 8, 4692–4699.

    PubMed  CAS  Google Scholar 

  • Harper, M. I., Monk, M., and Fosten, M. (1981) Preferential paternal X-inactivation in extra-embryonic tissues of early mouse embryos. J. Embryol. exp. Morph. 67, 127–135.

    Google Scholar 

  • Hockey, A. J., Adra, C. N., and McBurney, M. W. (1989) Reactivation of Hprt on the inactive X chromosome with DNA demethylating agents. Som. Cell Mol. Genet. 15, 421–434.

    CAS  Google Scholar 

  • Holliday, R. (1989) A different kind of inheritance. Sci. Amer. 260, 60–73.

    PubMed  CAS  Google Scholar 

  • Holliday, R. (1991) Is DNA methylation of X chromosome genes stable during aging? Somatic Cell Mol. Genet. 17, 101–102.

    CAS  Google Scholar 

  • Holliday, R., and Pugh, J. E. (1975) DNA modification methanisms and gene activity during development. Science 187, 226–232.

    PubMed  CAS  Google Scholar 

  • Homman, N., Heuertz, S., and Hors, C. M. C. (1987) Time-dependence of X-gene reactiva¬tion induced by 5-azacytidine; possible progressive restructuring of chromatin. Exp. cell. Res. 172, 481–486.

    PubMed  CAS  Google Scholar 

  • Howlett, S. K., and Reik, W. (1991) Methylation levels of maternal and paternal genomes during preimplantation development. Development 113, 119–127.

    PubMed  CAS  Google Scholar 

  • Jablonka, E., Goitein, R., Marcus, M., and Cedar, H. (1985) DNA hypomethylation causes an increase in DNase I sensitivity and an advance in the time of replication of the entire inactive X chromosome. Chromosoma 93, 152–156.

    PubMed  CAS  Google Scholar 

  • Jaenisch, R., and Jahner, D. (1984) Methylation, expression and chromosomal position of genes in mammals. Biochim. Biophys. Acta 782, 1–9.

    CAS  Google Scholar 

  • Jahner, D., and Jaenisch, R. (1985) Retrovirus-induced de novo methylation of flanking host sequences correlate with gene activity. Nature 315, 594–597.

    PubMed  CAS  Google Scholar 

  • Johnston, P. G., and Cattanach, B. M. (1981) Controlling elements in the mouse IV. Evidence of non-random X-inactivation. Genet. Res. Camb. 37, 151–160.

    CAS  Google Scholar 

  • Jones, P. A., and Buckley, J. D. (1990) The role of DNA methylation in cancer. Adv. Cancer Res. 54, 1–24.

    PubMed  CAS  Google Scholar 

  • Jones, P. A. Wolkowicz, M. J., Rideout, I. W. M., Gonzales, F. A., Marziasz, C. M., Coetzee, G. A., and Tapscott, S. J. (1990) De novo methylation of the MyoDl CpG island during the establishment of immortal cell lines. Proc. Natl. Acad. Sci. USA 87, 6117–6121.

    PubMed  CAS  Google Scholar 

  • Kanda, N. (1973) A new differential technique for staining the heteropycnotic X chromosome is female mice. Expl. Cell Res. 80, 463–467.

    CAS  Google Scholar 

  • Kornberg, R. D., and Lorch, Y. (1991) Irresistible force meets immovable object: transcription and the nucleosome. Cell 67, 833–836.

    PubMed  CAS  Google Scholar 

  • Kratzer, P. G., and Chapman, V. M. (1981) X chromosome reactivation in oocytes of Mus car oil Proc. Natl. Acad. Sci. USA 78, 3093–3097.

    CAS  Google Scholar 

  • Kratzer, P. G., and Gartler, S. M. (1978) HGPRT activity changes in preimplantation mouse embryos. Nature 274, 503–504.

    PubMed  CAS  Google Scholar 

  • Kratzer, P. G., Chapman, V. M., Lambert, H., Evans, R. E., and Liskay, R. M. (1983) Differences in the DNA of the inactive X chromosomes of fetal and extraembryonic tissues of mice. Cell 33, 37–42.

    PubMed  CAS  Google Scholar 

  • Laird, C. D. (1987) Proposed mechanism of inheritance and expression of the human fragile-X syndrome of mental retardation. Genetics 117, 587–599.

    PubMed  CAS  Google Scholar 

  • Landoulsi, A., Malki, A., Kern, R., Kohiyama, M., and Hughes, P. (1990) The E. coli cell surface specifically prevents the initiation of DNA replication at oriC on hemimethylated DNA templates. Cell 63, 1053–1060.

    CAS  Google Scholar 

  • Lewis, J., and Bird, A. (1991) DNA methylation and chromatin structure. FEBS Lett. 285, 155–159.

    PubMed  CAS  Google Scholar 

  • Lin, D., and Chinault, A. C. (1988) Comparative study of DNase I sensitivity at the X-linked human HPRT locus. Somat. Cell Mol. Genet. 14, 261–272.

    PubMed  CAS  Google Scholar 

  • Lindsay, S., Monk, M., Holliday, R., Huschtscha, L., Davies, K. E., Riggs, A. D., and Flavell, R. A. (1985) Differences in methylation on the active and inactive human X chromosomes. Ann. Hum. Genet. 49, 115–127.

    PubMed  CAS  Google Scholar 

  • Lock, L. F., Takagi, N., and Martin, G. R. (1987) Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation. Cell 48, 39–46.

    PubMed  CAS  Google Scholar 

  • Lyon, M. F. (1988) The William Allan Memorial Award address: X-chromosome inactivation and the location and expression of X-linked genes. Am. J. Hum. Genet. 42, 8–16.

    PubMed  CAS  Google Scholar 

  • Lyon, M. F., Zenthon, J., Evans, E. P., Burtenshaw, M. D., Wareham, K. A., and Williams, E. D. (1986) Lack of inactivation of a mouse X-linked gene physically separated from the inactivation center. J. Embryol. Exp. Morph. 97, 75–85.

    PubMed  CAS  Google Scholar 

  • Manuelidis, L. (1990) A view of interphase chromosomes. Science 250, 1533–1540.

    PubMed  CAS  Google Scholar 

  • McMahon, A., and Monk, M. (1983) X-chromosome activity in female mouse embryos heterozygous for Pgk-1 and Searle’s translocation, T(X;16)16H. Genet. Res. Camb. 41, 69–83.

    CAS  Google Scholar 

  • Migeon, B. R., Schmidt, M., Axelman, J., and Cullen, C. R. (1986) Complete reactivation of X chromosomes from human chorionic vili with a switch to early DNA replication. Proc. Natl. Acad. Sci. USA 83, 2182–2186.

    PubMed  CAS  Google Scholar 

  • Migeon, B. R., Axelman, J., and Beggs, A. H. (1988) Effect of ageing on reactivation of the human X-linked HPRT locus. Nature 335, 93–96.

    PubMed  CAS  Google Scholar 

  • Migeon, B. R., de Beur, S. J., and Axelman, J. (1989) Frequent depression G6PD and HPRT on the marsupial inactive X chromosome associated with cell proliferation in vitro. Exp. Cell Res. 182, 597–609.

    CAS  Google Scholar 

  • Migeon, B. R., Holland, M. M., Driscoll, D. J., and Robinson, J. C. (1991) Programmed demethylation in CpG islands during human fetal development. Somatic Cell Mol. Genet. 17, 159–168.

    CAS  Google Scholar 

  • Mohandas, T., Geller, R. L., Yen, P. H., Rosendorff, J., Bernstein, R., Yoshida, A., and Shapiro, L. J. (1987) Cytogentic and molecular studies on a recombinant human X chromosome: implications for the spreading of X-chromosome inactivation. Proc. Natl. Acad. Sci. USA 84, 4954–4958.

    PubMed  CAS  Google Scholar 

  • Monesi, V. (1965) Synthetic activities during spermatogenesis in the mouse. Exp. Cell Res. 39, 197–224.

    PubMed  CAS  Google Scholar 

  • Monesi, V., Geremia, R., D’Agostino, A., and Boitani, C. (1978) Biochemistry of male germ cell differentiation in mammals: RNA synthesis in meiotic and postmeiotic cells, in: Current Topics in Developmental Biology, Vol. 12, pp. 11–36. Eds. A. A. Moscone and A. Monroy. Academic Press, New York.

    Google Scholar 

  • Monk, M. (1986) Methylation and the X chromosome. BioEssays 4, 204–208.

    PubMed  CAS  Google Scholar 

  • Monk, M. (1987) Memories of mother and father (genomic imprinting). Nature 328, 203–204.

    PubMed  CAS  Google Scholar 

  • Monk, M., Boubelik, M., and Lehnert, S. (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic, and germ-cell lineages during mouse embryo development. Development 99, 371–382.

    PubMed  CAS  Google Scholar 

  • Mukherjee, A. B. (1976) Cell cycle analysis and X-chromosome inactivation in the developing mouse. Proc. Natl. Acad. Sci. USA 73, 1608–1611.

    PubMed  CAS  Google Scholar 

  • Oberlé, I., Rousseau, F., Heitz, D., Kretz, C., Devys, D., Hanauer, A., Boue, J., Bertheas, M. F., and Mandel, J. L. (1991) Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252, 1097–1102.

    Google Scholar 

  • Orend, G., Kuhlmann, I., and Doerfler, W. (1991) Spreading of DNA methylation across integrated foreign (adenovirus type 12) genomes in mammalian cells. J. Virol. 65, 4301–4308.

    PubMed  CAS  Google Scholar 

  • Otto, S. P., and Walbot, V. (1990) DNA methylation in eukaryotes; kinetics of demethylation and de novo methylation during the life cycle. Genetics 124, 429–437.

    PubMed  CAS  Google Scholar 

  • Pagani, F., Toniolo, D., and Vergani, C. (1990) Stability of DNA methylation of X-chromosome genes during aging. Somat. Cell Mol. Genet. 16, 101–103.

    Google Scholar 

  • Paroush, Z., Keshet, I., Yisraeli, J., and Cedar, H. (1990) Dynamics of demethylation and activation of the alpha-actin gene in myoblasts. Cell 63, 1229–1237.

    PubMed  CAS  Google Scholar 

  • Paterno, G. D., Adra, C. N., and McBurney, M. W. (1985) X chromosome reactivation in mouse embryonal carcinoma cells. Mol. Cell. Biol. 5, 2705–2712.

    PubMed  CAS  Google Scholar 

  • Pfeifer, G. P., and Drahovsky, D. (1986) Preferential binding of DNA methyltransferase and increased de novo methylation of deoxyinosine containing DNA. FEBS Lett. 207, 75–78.

    PubMed  CAS  Google Scholar 

  • Pfeifer, G. P., and Riggs, A. D. (1991) Chromatin differences between active and inactive X chromosomes revealed by genomic footprinting of permeabilized cells using DNase I and ligation-mediated PCR. Genes Dev. 5, 1102–1113.

    PubMed  CAS  Google Scholar 

  • Pfeifer, G. P., Steigerwald, S. D., Mueller, P. R., Wold, B., and Riggs, A. D. (1989) Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246, 810–813.

    PubMed  CAS  Google Scholar 

  • Pfeifer, G. P., Steigerwald, S. D., Hansen, R. S., Gartler, S. M., and Riggs, A. D. (1990a) Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: Methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc. Natl. Acad. Sci. USA 87, 8252–8256.

    PubMed  CAS  Google Scholar 

  • Pfeifer, G. P., Tanguay, R. L., Steigerwald, S. D., and Riggs, A. D. (1990b) In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Genes Dev. 4, 1277–1287.

    PubMed  CAS  Google Scholar 

  • Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1991) In vivo mapping of a DNA adduct at nucleotide resolution: Detection of pyrimidine (6-4) pyrimidone photoprod- ucts by ligation-mediated polymerase chain reaction. Proc. Natl. Acad. Sci. USA 88, 1374–1378.

    PubMed  CAS  Google Scholar 

  • Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1992) Binding of transcription factors creates hot spots for UV photoproducts in vivo. Mol. Cell Biol. 12, 1798–1804.

    PubMed  CAS  Google Scholar 

  • Prantera, G., and Ferraro, M. (1990) Analysis of methylation and distribution of CpG sequences on human active and inactive X chromosomes by in situ nick translation. Chromosoma 99, 18–23.

    PubMed  CAS  Google Scholar 

  • Rastan, S., and Robertson, E. J. (1985) X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. J. Embryol. Exp. Morph. 90, 379–388.

    PubMed  CAS  Google Scholar 

  • Razin, A., and Cedar, H. (1991) DNA methylation and gene expression. Microbiol. Rev. 55, 451–458.

    PubMed  CAS  Google Scholar 

  • Razin, A., Szyf, M., Kafri, T., Rolle, M., Giloh, H., Scarpa, S., Carotti, D., and Cantoni, G. L. (1986) Replacement of 5-methylcytosine by cytosine: a possible mechanism for transient DNA demethylation during differentiation. Proc. Natl. Acad. Sci. USA 83, 2827–2831.

    PubMed  CAS  Google Scholar 

  • Riggs, A. D. (1975) X chromosome inactivation, differentiation and DNA methylation. Cytogenet. Cell Genet. 14, 9–25.

    PubMed  CAS  Google Scholar 

  • Riggs, A. D. (1989) DNA methylation and cell memory. Cell Biophysics 15, 1–13.

    PubMed  CAS  Google Scholar 

  • Riggs, A. D. (1990a) DNA methylation and late replication probably aid cell memory, and type I DNA reeling could aid chromosome folding and enhancer function. Phil. Trans. R. Soc. Lond. 326, 285–297.

    CAS  Google Scholar 

  • Riggs, A. D. (1990b) Marsupials and mechanisms of X chromosome inactivation. Austr. J. Zool. 37, 419–441.

    Google Scholar 

  • Riggs, A. D., and Jones, P. A. (1983) Methylcytosine, gene regulation, and cancer. Adv. Cancer Res. 40, 1 - 30.

    PubMed  CAS  Google Scholar 

  • Riggs, A. D., and Pfeifer, G. P. (1992) X chromosome inactivation and cell memory. Trends Genet. 8, 169–174.

    PubMed  CAS  Google Scholar 

  • Riley, D. E., Goldman, M. A., and Gartler, S. M. (1986) Chromatin structure of active and inactive human X-linked phosphoglycerate kinase gene. Som. Cell Mol. Genet. 12, 73–80.

    CAS  Google Scholar 

  • Sanford, J. P., Clark, H. J., Chapman, V. M., and Rossant, J. (1987) Differences in DNA methylation during oogenesis and spermatogenesis, and their persistence during early embryogenesis in the mouse. Genes Dev. 1, 1039–1046.

    PubMed  CAS  Google Scholar 

  • Schanz, S., and Steinbach, P. (1989) Investigation of the “variable spreading”of X inactivation into a translocated autosome. Hum. Genet. 82, 244–248.

    PubMed  CAS  Google Scholar 

  • Schmidt, M., Wolf, S. F., and Migeon, B. R. (1985) Evidence for a relationship between DNA methylation and DNA replication from studies of the 5-azacytidine-reactivated allocyclic X chromosome. Exp. Cell Res. 158, 301–310.

    PubMed  CAS  Google Scholar 

  • Selker, E. U. (1990) DNA methylation and chromatin structure: A view from below. Trends Biochem. Sci. 15, 103–107.

    PubMed  CAS  Google Scholar 

  • Selker, E. U., and Garrett, P. W. (1988) DNA sequence duplications trigger gene inactivation in Neurospora crassa. Proc. Natl. Acad. Sci. USA 85, 6870–6874.

    PubMed  CAS  Google Scholar 

  • Shafer, D. A., and Priest, J. H. (1984) Reversal of DNA methylation with 5-azacytidine alters chromosome replication patterns in human lymphocyte and fibroblast cultures. Am. J. Hum. Genet. 36, 534–545.

    PubMed  CAS  Google Scholar 

  • Shemer, R., Kafri, T., O’Connell, A., Eisenberg, S., Breslow, J. L., and Razin, A. (1991) Methylation changes in the apolipoprotein AI gene during embryonic development of the mouse. Proc. Natl. Acad. Sci. USA 88, 11300–11304.

    PubMed  CAS  Google Scholar 

  • Singer, J., Roberts-Ems, J., Luthardt, F. W., and Riggs, A. D. (1979) Methylation of DNA in mouse early embryos, teratocarcinoma cells and adult tissues of mouse and rabbit. Nucl. Acids Res. 7, 2369–2385.

    PubMed  CAS  Google Scholar 

  • Singer-Sam, J., Grant, M., LeBon, J. M., Okuyama, K., Chapman, V., Monk, M., and Riggs, A. D. (1990a) Use of a Hpall-polymerase chain reaction assay to study DNA methylation in the Pgk-1 CpG island of mouse embryos at the time of X-chromosome inactivation. Mol. Cell. Biol. 10, 4987–4989.

    PubMed  CAS  Google Scholar 

  • Singer-Sam, J., Robinson, M. O., Bellve, A. R., Simon, M. I., and Riggs, A. D. (1990b) Measurement by quantitative PCR of changes in HPRT, PGK-1, PGK-2, APRT, MTase, and ZFY gene transcripts during mouse spermatogenesis. Nucl. Acids Res. 18, 1255–1259.

    PubMed  CAS  Google Scholar 

  • Singer-Sam, J., Goldstein, L., Dai, A., Gartler, S. M., and Riggs, A. D. (1992) A potentially critical Hpa II site of the X chromosome-linked PGK1 gene is unmethylated prior to the onset of meiosis of human oogenic cells. Proc. Natl. Acad. Sci. USA 89, 1413–1417.

    PubMed  CAS  Google Scholar 

  • Smith, S. S., Kan, J., Baker, D. J., Kaplan, B. E., and Dembek, P. (1991) Recognition of unusual DNA structures by human DNA(cystosine-5)methyltransferase. J. Mol. Biol. 217, 39–51.

    PubMed  CAS  Google Scholar 

  • Steigerwald, S. D., Pfeifer, G. P., and Riggs, A. D. (1990) Ligation-mediated PCR improves the sensitivity of methylation analysis by restriction enzymes and detection of specific DNA strand breaks. Nucl. Acids Res. 18, 1435–1439.

    PubMed  CAS  Google Scholar 

  • Sugawara, O., Takagi, N., and Sasaki, M. (1985) Correlation between X-chromosome inactivation and cell differentiation in female preimplantation mouse embryos. Cytogenet. Cell Genet. 39, 210–219.

    PubMed  CAS  Google Scholar 

  • Sullivan, C. H., and Grainger, R. M. (1986) Delta-crystallin genes become hypomethylated in postmitotic lens cells during chicken development. Proc. Natl. Acad. Sci. USA 83, 329–333.

    Google Scholar 

  • Szyf, M., Schimmer, B. P., and Seidman, J. G. (1989) Nucleotide-sequence-specific de novo methylation in a somatic murine cell line. Proc. Natl. Acad. Sci. USA 86, 6853–6857.

    PubMed  CAS  Google Scholar 

  • Takagi, N. (1988) Requirement of mitoses for the reversal of X inactivation in cell hybrids between murine embryonal carcinoma cells and normal female thymocytes. Exp. Cell. Res. 175, 363–375.

    PubMed  CAS  Google Scholar 

  • Takagi, N., and Sasaki, M. (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256, 640–642.

    PubMed  CAS  Google Scholar 

  • Takagi, N., Yoshida, M. A., Sugawara, O., and Sasaki, M. (1983) Reversal of X inactivation in female mouse somatic cells hybridized with murine teratocarcinoma stem cells in vitro. Cell 34, 1053–1062.

    PubMed  CAS  Google Scholar 

  • Taylor, J. H. (1984) Origins of replication and gene regulation. Mol. Cell. Biochem. 61, 99–109.

    PubMed  CAS  Google Scholar 

  • Van Dyke, D. L., Flejter, W. L., Worsham, M. J., Roberson, J. R. Higgins, J. V., Herr, H. M., Knuutila, S., Wang, N., Babu, V. R., and Weiss, L. (1986) A practical metaphase marker of the inactive X chromosome. Am. J. Human Genet. 39, 88–95.

    Google Scholar 

  • VandeBerg, T. L., Robinson, E. S., Samollow, P. G., and Johnson, P. G. (1987) X-linked gene expression and X-chromosome inactivation: Marsupials, mouse, and man compared, in: Isozymes: Current Topics in Biological and Medical Research, pp. 225–253. Ed. C. L. Markert. Alan R. Liss, New York.

    Google Scholar 

  • Venolia, L., Cooper, D. W., O’Brien, D. A., Millette, C. F., and Gartler, S. M. (1984) Transformation of the Hprt gene with DNA from spermatogenic cells. Chromosoma 90, 185–189.

    PubMed  CAS  Google Scholar 

  • Verkerk, A. J. M. H., Pieretti, M, Sutcliffe, J. S., Fu, Y.-H., Kühl, D. P. A., Pizzuti, A., Reiner, O., Richards, S., Victoria, M. F., Zhang, F., Eussen, B. E., Ommen, G.-J. B. v., Blonden, L. A. J., Riggins, G. J., Chastain, J. L., Kunst, C. B., Galjaard, H., Caskey, C. T., Nelson, D. L., Oostra, B. A., and Warren, S. T. (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914.

    PubMed  CAS  Google Scholar 

  • Vincent, A., Heitz, D., Petit, C., Kretz, C., Oberle, I., and Mandel, J. L. (1991) Abnormal pattern detected in fragile-X patients by pulsed-field gel electrophoresis. Nature 349, 624–626.

    PubMed  CAS  Google Scholar 

  • Walker, C. L., Cargile, C. B., Floy, K. M., Delannoy, M., and Migeon, B. R. (1991) The Barr body is a looped X chromosome formed by telomere association. Proc. Natl. Acad. Sei. USA 88, 6191–6195.

    CAS  Google Scholar 

  • Wareham, K. A., Lyon, M. F., Glenister, P. H., and Williams, E. D. (1987) Age related reactivation of an X-linked gene. Nature 327, 725–727.

    PubMed  CAS  Google Scholar 

  • Wolf, S. F., Jolly, D. J., Lunnen, K. D., Friedmann, T., and Migeon, B. R. (1984) Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation. Proc. Natl. Acad. Sei. USA 81, 2806–2810.

    CAS  Google Scholar 

  • Yisraeli, Y., and Szyf, M. (1984) Gene methylation patterns and expression, in: DNA Methylation: Biochemistry and Biological Significance, pp. 353–378. Eds A. Razin, H. Cedar and A. D. Riggs. Springer-Verlag, New York.

    Google Scholar 

  • Yu, S., Pritchard, M., Kremer, E., Lynch, M., Nancarrow, J., Baker, E., Holman, K., Mulley, J. C., Warren, S. T., Schlessinger, D., Sutherland, G. R., and Richards, R. I. (1991) Fragile X genotype characterized by an unstable region of DNA. Science 252, 1179–1181.

    CAS  Google Scholar 

  • Yu, W. D., Wenger, S. L., and Steele, M. W. (1990) X chromosome imprinting in fragile X syndrome. Hum. Genet. 85, 590–594.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Singer-Sam, J., Riggs, A.D. (1993). X chromosome inactivation and DNA methylation. In: Jost, JP., Saluz, HP. (eds) DNA Methylation. EXS, vol 64. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9118-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9118-9_16

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9915-4

  • Online ISBN: 978-3-0348-9118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics