Skip to main content
Log in

Gene regulation in time and space during X-chromosome inactivation

  • Review Article
  • Published:

From Nature Reviews Molecular Cell Biology

View current issue Sign up to alerts

Abstract

X-chromosome inactivation (XCI) is the epigenetic mechanism that ensures X-linked dosage compensation between cells of females (XX karyotype) and males (XY). XCI is essential for female embryos to survive through development and requires the accurate spatiotemporal regulation of many different factors to achieve remarkable chromosome-wide gene silencing. As a result of XCI, the active and inactive X chromosomes are functionally and structurally different, with the inactive X chromosome undergoing a major conformational reorganization within the nucleus. In this Review, we discuss the multiple layers of genetic and epigenetic regulation that underlie initiation of XCI during development and then maintain it throughout life, in light of the most recent findings in this rapidly advancing field. We discuss exciting new insights into the regulation of X inactive-specific transcript (XIST), the trigger and master regulator of XCI, and into the mechanisms and dynamics that underlie the silencing of nearly all X-linked genes. Finally, given the increasing interest in understanding the impact of chromosome organization on gene regulation, we provide an overview of the factors that are thought to reshape the 3D structure of the inactive X chromosome and of the relevance of such structural changes for XCI establishment and maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: The X-inactivation centre and the initiation of X-chromosome inactivation.
Fig. 2: Epigenetic dynamics during X-chromosome inactivation.
Fig. 3: Molecular mechanisms of X-chromosome inactivation.
Fig. 4: Structural and functional differences between the active and inactive X chromosomes.

Similar content being viewed by others

References

  1. Barr, M. L. & Bertram, E. G. A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163, 676 (1949).

    CAS  PubMed  Google Scholar 

  2. Ohno, S. & Hauschka, T. S. Allocycly of the X-chromosome in tumors and normal tissues. Cancer Res. 20, 541–545 (1960).

    CAS  PubMed  Google Scholar 

  3. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012). This articles reveals that the Xic is organized into two distinct TADs, thereby spatially partitioning the promoters and other cis-regulating elements of the Xist and Tsix loci.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lyon, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373 (1961).

    CAS  PubMed  Google Scholar 

  6. Ohno, S. Sex Chromosomes and Sex-Linked Genes (Springer-Verlag, 1966)

  7. Deng, X. et al. Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster. Nat. Genet. 43, 1179–1185 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiong, Y. et al. RNA sequencing shows no dosage compensation of the active X-chromosome. Nat. Genet. 42, 1043–1047 (2010).

    CAS  PubMed  Google Scholar 

  9. Pessia, E., Makino, T., Bailly-Bechet, M., McLysaght, A. & Marais, G. A. B. Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc. Natl Acad. Sci. USA 109, 5346–5351 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pessia, E., Engelstädter, J. & Marais, G. A. B. The evolution of X chromosome inactivation in mammals: the demise of Ohno’s hypothesis? Cell. Mol. Life Sci. 71, 1383–1394 (2014).

    CAS  PubMed  Google Scholar 

  11. Carrel, L. & Brown, C. J. When the Lyon(ized chromosome) roars: ongoing expression from an inactive X chromosome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160355 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Deakin, J. E., Chaumeil, J., Hore, T. A. & Marshall Graves, J. A. Unravelling the evolutionary origins of X chromosome inactivation in mammals: insights from marsupials and monotremes. Chromosome Res. 17, 671–685 (2009).

    CAS  PubMed  Google Scholar 

  13. Whitworth, D. J. & Pask, A. J. The X factor: X chromosome dosage compensation in the evolutionarily divergent monotremes and marsupials. Semin. Cell Dev. Biol. 56, 117–121 (2016).

    CAS  PubMed  Google Scholar 

  14. Richardson, B. J., Czuppon, A. B. & Sharman, G. B. Inheritance of glucose-6-phosphate dehydrogenase variation in kangaroos. Nat. New Biol. 230, 154–155 (1971).

    CAS  PubMed  Google Scholar 

  15. Mahadevaiah, S. K., Sangrithi, M. N., Hirota, T. & Turner, J. M. A. A single-cell transcriptome atlas of marsupial embryogenesis and X inactivation. Nature 586, 612–617 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Grant, J. et al. Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature 487, 254–258 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Okamoto, I. et al. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472, 370–374 (2011).

    CAS  PubMed  Google Scholar 

  18. Augui, S., Nora, E. P. & Heard, E. Regulation of X-chromosome inactivation by the X-inactivation centre. Nat. Rev. Genet. 12, 429–442 (2011).

    CAS  PubMed  Google Scholar 

  19. Galupa, R. & Heard, E. X-Chromosome inactivation: a crossroads between chromosome architecture and gene regulation. Annu. Rev. Genet. 52, 535–566 (2018).

    CAS  PubMed  Google Scholar 

  20. Brown, C. J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542 (1992).

    CAS  PubMed  Google Scholar 

  21. Borsani, G. et al. Characterization of a murine gene expressed from the inactive X chromosome. Nature 351, 325–329 (1991).

    CAS  PubMed  Google Scholar 

  22. Brockdorff, N. et al. Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351, 329–331 (1991).

    CAS  PubMed  Google Scholar 

  23. Brockdorff, N. et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71, 515–526 (1992).

    CAS  PubMed  Google Scholar 

  24. Brown, C. J. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349, 38–44 (1991).

    CAS  PubMed  Google Scholar 

  25. Rastan, S. & Robertson, E. J. X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. J. Embryol. Exp. Morphol. 90, 379–388 (1985).

    CAS  PubMed  Google Scholar 

  26. Brown, C. J. et al. Localization of the X inactivation centre on the human X chromosome in Xq13. Nature 349, 82–84 (1991).

    CAS  PubMed  Google Scholar 

  27. Heard, E., Mongelard, F., Arnaud, D. & Avner, P. Xist yeast artificial chromosome transgenes function as X-inactivation centers only in multicopy arrays and not as single copies. Mol. Cell. Biol. 19, 3156–3166 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Okamoto, I. et al. Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 438, 369–373 (2005).

    CAS  PubMed  Google Scholar 

  29. Jonkers, I. et al. RNF12 is an X-encoded dose-dependent activator of X chromosome inactivation. Cell 139, 999–1011 (2009).

    CAS  PubMed  Google Scholar 

  30. Schulz, E. G. et al. The two active X chromosomes in female ESCs block exit from the pluripotent state by modulating the ESC signaling network. Cell Stem Cell 14, 203–216 (2014).

    CAS  PubMed  Google Scholar 

  31. Genolet, O., Monaco, A. A., Dunkel, I., Boettcher, M. & Schulz, E. G. Identification of X-chromosomal genes that drive sex differences in embryonic stem cells through a hierarchical CRISPR screening approach. Genome Biol. 22, 110 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Navarro, P. et al. Molecular coupling of Tsix regulation and pluripotency. Nature 468, 457–460 (2010).

    CAS  PubMed  Google Scholar 

  33. Payer, B. et al. Tsix RNA and the germline factor, PRDM14, link X reactivation and stem cell reprogramming. Mol. Cell 52, 805–818 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma, Z., Swigut, T., Valouev, A., Rada-Iglesias, A. & Wysocka, J. Sequence-specific regulator Prdm14 safeguards mouse ESCs from entering extraembryonic endoderm fates. Nat. Struct. Mol. Biol. 18, 120–127 (2011).

    CAS  PubMed  Google Scholar 

  35. Navarro, P. et al. Molecular coupling of Xist regulation and pluripotency. Science 321, 1693–1695 (2008).

    CAS  PubMed  Google Scholar 

  36. Lee, J. T., Davidow, L. S. & Warshawsky, D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nat. Genet. 21, 400–404 (1999).

    CAS  PubMed  Google Scholar 

  37. Lee, J. T. Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell 103, 17–27 (2000).

    CAS  PubMed  Google Scholar 

  38. Sado, T., Wang, Z., Sasaki, H. & Li, E. Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development 128, 1275–1286 (2001).

    CAS  PubMed  Google Scholar 

  39. Maclary, E. et al. Differentiation-dependent requirement of Tsix long non-coding RNA in imprinted X-chromosome inactivation. Nat. Commun. 5, 4209 (2014).

    CAS  PubMed  Google Scholar 

  40. Lee, J. T. & Lu, N. Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell 99, 47–57 (1999).

    CAS  PubMed  Google Scholar 

  41. Spencer, R. J. et al. A boundary element between Tsix and Xist binds the chromatin insulator Ctcf and contributes to initiation of X-chromosome inactivation. Genetics 189, 441–454 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. van Bemmel, J. G. et al. The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist. Nat. Genet. 51, 1024–1034 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Tian, D., Sun, S. & Lee, J. T. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143, 390–403 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun, S. et al. Jpx RNA activates Xist by evicting CTCF. Cell 153, 1537–1551 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Karner, H. et al. Functional conservation of LncRNA JPX despite sequence and structural divergence. J. Mol. Biol. 432, 283–300 (2020).

    CAS  PubMed  Google Scholar 

  46. Carmona, S., Lin, B., Chou, T., Arroyo, K. & Sun, S. LncRNA Jpx induces Xist expression in mice using both trans and cis mechanisms. PLoS Genet. 14, e1007378 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. Barakat, T. S. et al. The trans-activator RNF12 and cis-acting elements effectuate X chromosome inactivation independent of X-pairing. Mol. Cell 53, 965–978 (2014).

    CAS  PubMed  Google Scholar 

  48. Yin, H., Wei, C. & Lee, J. T. Revisiting the consequences of deleting the X inactivation center. Proc. Natl Acad. Sci. USA 118, e2102683118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Collombet, S. et al. Parental-to-embryo switch of chromosome organization in early embryogenesis. Nature 580, 42–146 (2020).

    Google Scholar 

  50. Furlan, G. et al. The Ftx noncoding locus controls X chromosome inactivation independently of its RNA products. Mol. Cell 70, 462–472.e8 (2018).

    CAS  PubMed  Google Scholar 

  51. Gjaltema, R. A. F. et al. Distal and proximal cis-regulatory elements sense X-chromosomal dosage and developmental state at the Xist locus. bioRxiv https://doi.org/10.1101/2021.03.29.437476 (2021).

    Article  Google Scholar 

  52. Barakat, T. S. et al. The trans-activator RNF12 and cis-acting elements effectuate X chromosome inactivation independent of X-pairing. Mol. Cell 53, 965–978 (2014).

    CAS  PubMed  Google Scholar 

  53. Gontan, C. et al. REX1 is the critical target of RNF12 in imprinted X chromosome inactivation in mice. Nat. Commun. 9, 4752 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. Ogawa, Y. & Lee, J. T. Xite, X-inactivation intergenic transcription elements that regulate the probability of choice. Mol. Cell 11, 731–743 (2003).

    CAS  PubMed  Google Scholar 

  55. Stavropoulos, N., Rowntree, R. K. & Lee, J. T. Identification of developmentally specific enhancers for Tsix in the regulation of X chromosome inactivation. Mol. Cell. Biol. 25, 2757–2769 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Giorgetti, L. et al. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157, 950–963 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Galupa, R. et al. A conserved noncoding locus regulates random monoallelic Xist expression across a topological boundary. Mol. Cell 77, 352–367.e8 (2020). This article demonstrates the role of Linx as a negative regulator of Xist during mouse development, although it is neither through direct interaction with Xist nor through Tsix.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Shin, J. et al. RLIM is dispensable for X-chromosome inactivation in the mouse embryonic epiblast. Nature 511, 86–89 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Soma, M., Fujihara, Y., Okabe, M., Ishino, F. & Kobayashi, S. Ftx is dispensable for imprinted X-chromosome inactivation in preimplantation mouse embryos. Sci. Rep. 4, 5181 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Huynh, K. D. & Lee, J. T. Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature 426, 857–862 (2003).

    CAS  PubMed  Google Scholar 

  61. Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D. & Heard, E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644–649 (2004).

    CAS  PubMed  Google Scholar 

  62. Mak, W. et al. Reactivation of the paternal X chromosome in early mouse embryos. Science 303, 666–669 (2004).

    CAS  PubMed  Google Scholar 

  63. Patrat, C. et al. Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice. Proc. Natl Acad. Sci. USA 106, 5198–5203 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014).

    CAS  PubMed  Google Scholar 

  65. Borensztein, M. et al. Xist-dependent imprinted X inactivation and the early developmental consequences of its failure. Nat. Struct. Mol. Biol. 24, 226–233 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Marahrens, Y., Panning, B., Dausman, J., Strauss, W. & Jaenisch, R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev. 11, 156–166 (1997).

    CAS  PubMed  Google Scholar 

  67. Tada, T. et al. Imprint switching for non-random X-chromosome inactivation during mouse oocyte growth. Development 127, 3101–3105 (2000).

    CAS  PubMed  Google Scholar 

  68. Inoue, A., Jiang, L., Lu, F. & Zhang, Y. Genomic imprinting of Xist by maternal H3K27me3. Genes Dev. 31, 1927–1932 (2017). This article demonstrates that the transient maternal Xist imprint regulating iXCI in early mouse embryos is established through a large Polycomb domain upstream of Xist.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mei, H. et al. H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3 in mouse embryos. Nat. Genet. 53, 539–550 (2021).

    CAS  PubMed  Google Scholar 

  70. Chen, Z., Djekidel, M. N. & Zhang, Y. Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos. Nat. Genet. 53, 551–563 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Shin, J. et al. Maternal Rnf12/RLIM is required for imprinted X-chromosome inactivation in mice. Nature 467, 977–981 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chiba, H. et al. De novo DNA methylation independent establishment of maternal imprint on X chromosome in mouse oocytes. Genesis 46, 768–774 (2008).

    CAS  PubMed  Google Scholar 

  73. Inoue, A., Chen, Z., Yin, Q. & Zhang, Y. Maternal Eed knockout causes loss of H3K27me3 imprinting and random X inactivation in the extraembryonic cells. Genes Dev. 32, 1525–1536 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Harris, C. et al. Author response: conversion of random X-inactivation to imprinted X-inactivation by maternal PRC2. eLife https://doi.org/10.7554/eLife.44258.033 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Du, Z. et al. Polycomb group proteins regulate chromatin architecture in mouse oocytes and early embryos. Mol. Cell 77, 825–839.e7 (2020).

    CAS  PubMed  Google Scholar 

  76. Patrat, C., Ouimette, J.-F. & Rougeulle, C. X chromosome inactivation in human development. Development 147, dev183095 (2020).

    CAS  PubMed  Google Scholar 

  77. Daniels, R., Zuccotti, M., Kinis, T., Serhal, P. & Monk, M. XIST expression in human oocytes and preimplantation embryos. Am. J. Hum. Genet. 61, 33–39 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Briggs, S. F., Dominguez, A. A. & Chavez, S. L. Single-cell XIST expression in human preimplantation embryos and newly reprogrammed female induced pluripotent stem cells. Stem Cells 33, 1771–1781 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 167, 285 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Vallot, C. et al. XACT noncoding RNA competes with XIST in the control of X chromosome activity during human early development. Cell Stem Cell 20, 102–111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Barros de Andrade, E. et al. Kinetics of Xist-induced gene silencing can be predicted from combinations of epigenetic and genomic features. Genome Res. 29, 1087–1099 (2019).

    Google Scholar 

  82. Sahakyan, A. et al. Human naive pluripotent stem cells model X chromosome dampening and X inactivation. Cell Stem Cell 20, 87–101 (2017).

    CAS  PubMed  Google Scholar 

  83. Okamoto, I. et al. The X-chromosome dosage compensation program during the development of cynomolgus monkeys. Science 374, eabd8887 (2021).

    CAS  PubMed  Google Scholar 

  84. Vallot, C. et al. XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nat. Genet. 45, 239–241 (2013).

    CAS  PubMed  Google Scholar 

  85. Migeon, B. R., Chowdhury, A. K., Dunston, J. A. & McIntosh, I. Identification of TSIX, encoding an RNA antisense to human XIST, reveals differences from its murine counterpart: implications for X inactivation. Am. J. Hum. Genet. 69, 951–960 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Migeon, B. R., Lee, C. H., Chowdhury, A. K. & Carpenter, H. Species differences in TSIX/Tsix reveal the roles of these genes in X-chromosome inactivation. Am. J. Hum. Genet. 71, 286–293 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Migeon, B. R. Stochastic gene expression and chromosome interactions in protecting the human active X from silencing by. Nucleus 12, 1–5 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Migeon, B. R., Beer, M. A. & Bjornsson, H. T. Embryonic loss of human females with partial trisomy 19 identifies region critical for the single active X. PLoS ONE 12, e0170403 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Żylicz, J. J. & Heard, E. Molecular mechanisms of facultative heterochromatin formation: an X-chromosome perspective. Annu. Rev. Biochem. 89, 255–282 (2020).

    PubMed  Google Scholar 

  90. Cheng, S. et al. Single-cell RNA-seq reveals cellular heterogeneity of pluripotency transition and X chromosome dynamics during early mouse development. Cell Rep. 26, 2593–2607.e3 (2019).

    CAS  PubMed  Google Scholar 

  91. Moreira de Mello, J. C., Fernandes, G. R. & Vibranovski, M. D. Early X chromosome inactivation during human preimplantation development revealed by single-cell RNA-sequencing. Sci. Rep. 7, 10794 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Wutz, A. & Jaenisch, R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell 5, 695–705 (2000).

    CAS  PubMed  Google Scholar 

  93. Żylicz, J. J. et al. the implication of early chromatin changes in X chromosome inactivation. Cell 176, 182–197.e23 (2019).

    PubMed  PubMed Central  Google Scholar 

  94. Nesterova, T. B. et al. Characterization of the genomic Xist locus in rodents reveals conservation of overall gene structure and tandem repeats but rapid evolution of unique sequence. Genome Res. 11, 833–849 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167–174 (2002).

    CAS  PubMed  Google Scholar 

  96. Ridings-Figueroa, R. et al. The nuclear matrix protein CIZ1 facilitates localization of Xist RNA to the inactive X-chromosome territory. Genes Dev. 31, 876–888 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sunwoo, H., Colognori, D., Froberg, J. E., Jeon, Y. & Lee, J. T. Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). Proc. Natl Acad. Sci. USA 114, 10654–10659 (2017). Ridings-Figueroa et al. (2017) and Sunwoo et al. (2017) demonstrate the role of the protein CIZ1 in the coating of the Xi by Xist.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ainscough, J. F.-X. et al. C-terminal domains deliver the DNA replication factor Ciz1 to the nuclear matrix. J. Cell Sci. 120, 115–124 (2006).

    Google Scholar 

  99. Warder, D. E. & Keherly, M. J. Ciz1, Cip1 interacting zinc finger protein 1 binds the consensus DNA sequence ARYSR(0–2)YYAC. J. Biomed. Sci. 10, 406–417 (2003).

    CAS  PubMed  Google Scholar 

  100. Rodermund, L. et al. Time-resolved structured illumination microscopy reveals key principles of Xist RNA spreading. Science 372, eabe7500 (2021).

    CAS  PubMed  Google Scholar 

  101. Pandya-Jones, A. et al. A protein assembly mediates Xist localization and gene silencing. Nature 587, 145–151 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Jeon, Y. & Lee, J. T. YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146, 119–133 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Helbig, R. & Fackelmayer, F. O. Scaffold attachment factor A (SAF-A) is concentrated in inactive X chromosome territories through its RGG domain. Chromosoma 112, 173–182 (2003).

    CAS  PubMed  Google Scholar 

  104. Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Minajigi, A. et al. Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349, aab227 (2015). Chu et al. (2015), McHugh et al. (2015) and Minajigi et al. (2015) provide a map of the proteins interacting with Xist RNA.

    Google Scholar 

  107. Smeets, D. et al. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin 7, 8 (2014).

    PubMed  PubMed Central  Google Scholar 

  108. Yamada, N. et al. Xist exon 7 contributes to the stable localization of Xist RNA on the inactive X-chromosome. PLoS Genet. 11, e1005430 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. Pullirsch, D. et al. The Trithorax group protein Ash2l and Saf-A are recruited to the inactive X chromosome at the onset of stable X inactivation. Development 137, 935–943 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hasegawa, Y. et al. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev. Cell 19, 469–476 (2010). This article demonstrates the role of the protein hnRNP U in Xist coating of the Xi.

    CAS  PubMed  Google Scholar 

  111. Kolpa, H. J., Fackelmayer, F. O. & Lawrence, J. B. SAF-A requirement in anchoring XIST RNA to chromatin varies in transformed and primary cells. Dev. Cell 39, 9–10 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Sakaguchi, T. et al. Control of chromosomal localization of Xist by hnRNP U family molecules. Dev. Cell 39, 11–12 (2016).

    CAS  PubMed  Google Scholar 

  113. Engreitz, J. M. et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341, 1237973 (2013).

    PubMed  PubMed Central  Google Scholar 

  114. Simon, M. D. et al. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504, 465–469 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ha, N. et al. Live-cell imaging and functional dissection of Xist RNA reveal mechanisms of X chromosome inactivation and reactivation. iScience 8, 1–14 (2018).

    PubMed  PubMed Central  Google Scholar 

  116. Pinter, S. F. et al. Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Res. 22, 1864–1876 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bousard, A. et al. The role of Xist-mediated Polycomb recruitment in the initiation of X-chromosome inactivation. EMBO Rep. 20, e48019 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Colognori, D., Sunwoo, H., Kriz, A. J., Wang, C.-Y. & Lee, J. T. Xist deletional analysis reveals an interdependency between Xist RNA and Polycomb complexes for spreading along the inactive X. Mol. Cell 74, 101–117.e10 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Pacini, G. et al. Integrated analysis of Xist upregulation and X-chromosome inactivation with single-cell and single-allele resolution. Nat. Commun. 12, 3638 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Marks, H. et al. Dynamics of gene silencing during X inactivation using allele-specific RNA-seq. Genome Biol. 16, 149 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. Chaumeil, J., Le Baccon, P., Wutz, A. & Heard, E. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev. 20, 2223–2237 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Collombet, S., Rall, I., Dugast-Darzacq, C. & Heckert, A. RNA polymerase II depletion from the inactive X chromosome territory is not mediated by physical compartmentalization. bioRxiv https://doi.org/10.1101/2021.03.26.437188 (2021).

    Article  Google Scholar 

  123. Colognori, D., Sunwoo, H., Wang, D., Wang, C.-Y. & Lee, J. T. Xist repeats A and B account for two distinct phases of X inactivation establishment. Dev. Cell 54, 21–32.e5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Monfort, A. et al. Identification of Spen as a crucial factor for Xist function through forward genetic screening in haploid embryonic stem cells. Cell Rep. 12, 554–561 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Moindrot, B. et al. A pooled shRNA screen identifies Rbm15, Spen, and Wtap as factors required for Xist RNA-mediated silencing. Cell Rep. 12, 562–572 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Nesterova, T. B. et al. Systematic allelic analysis defines the interplay of key pathways in X chromosome inactivation. Nat. Commun. 10, 3129 (2019).

    PubMed  PubMed Central  Google Scholar 

  127. Dossin, F. et al. SPEN integrates transcriptional and epigenetic control of X-inactivation. Nature 578, 455–460 (2020). This article demonstrates the key role of SPEN in silencing of X-linked genes chromosome-wide, and identifies a number of its interactors.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Loda, A. & Heard, E. Xist RNA in action: past, present, and future. PLoS Genet. 15, e1008333 (2019).

    PubMed  PubMed Central  Google Scholar 

  129. Mak, W. et al. Mitotically stable association of Polycomb group proteins Eed and Enx1 with the inactive X chromosome in trophoblast stem cells. Curr. Biol. 12, 1016–1020 (2002).

    CAS  PubMed  Google Scholar 

  130. Plath, K. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).

    CAS  PubMed  Google Scholar 

  131. Silva, J. et al. Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev. Cell 4, 481–495 (2003).

    CAS  PubMed  Google Scholar 

  132. Kalantry, S. & Magnuson, T. The Polycomb group protein EED is dispensable for the initiation of random X-chromosome inactivation. PLoS Genet. 2, e66 (2006).

    PubMed  PubMed Central  Google Scholar 

  133. Pintacuda, G. et al. hnRNPK recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to establish Polycomb-mediated chromosomal silencing. Mol. Cell 68, 955–969.e10 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Almeida, M. et al. PCGF3/5–PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science 356, 1081–1084 (2017). Pintacuda et al. (2017) and Almeida et al. (2017) demonstrate that a non-canonical PRC1 complex is directly recruited to the Xi by the Xist B-repeats, with PRC2 being recruited only subsequently.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Cooper, S. et al. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat. Commun. 7, 13661 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. da Rocha, S. T. et al. Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol. Cell 53, 301–316 (2014).

    PubMed  Google Scholar 

  137. Postlmayr, A., Dumeau, C. E. & Wutz, A. Cdk8 is required for establishment of H3K27me3 and gene repression by Xist and mouse development. Development 147, dev175141 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, J. et al. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nat. Genet. 28, 371–375 (2001).

    CAS  PubMed  Google Scholar 

  139. Kalantry, S. et al. The Polycomb group protein Eed protects the inactive X-chromosome from differentiation-induced reactivation. Nat. Cell Biol. 8, 195–202 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Almeida, M., Bowness, J. S. & Brockdorff, N. The many faces of Polycomb regulation by RNA. Curr. Opin. Genet. Dev. 61, 53–61 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Brockdorff, N., Bowness, J. S. & Wei, G. Progress toward understanding chromosome silencing by Xist RNA. Genes Dev. 34, 733–744 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Jansz, N. et al. Smchd1 targeting to the inactive X is dependent on the Xist-HnrnpK-PRC1 pathway. Cell Rep. 25, 1912–1923.e9 (2018).

    CAS  PubMed  Google Scholar 

  143. Gendrel, A.-V. et al. Epigenetic functions of smchd1 repress gene clusters on the inactive X chromosome and on autosomes. Mol. Cell. Biol. 33, 3150–3165 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Blewitt, M. E. et al. SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat. Genet. 40, 663–669 (2008).

    CAS  PubMed  Google Scholar 

  145. Wang, C.-Y., Jégu, T., Chu, H.-P., Oh, H. J. & Lee, J. T. SMCHD1 merges chromosome compartments and assists formation of super-structures on the inactive X. Cell 174, 406–421.e25 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Jansz, N. et al. Smchd1 regulates long-range chromatin interactions on the inactive X chromosome and at Hox clusters. Nat. Struct. Mol. Biol. 25, 766–777 (2018).

    CAS  PubMed  Google Scholar 

  147. Gdula, M. R. et al. The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome. Nat. Commun. 10, 30 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Sakakibara, Y. et al. Role of SmcHD1 in establishment of epigenetic states required for the maintenance of the X-inactivated state in mice. Development 145, dev166462 (2018).

    PubMed  Google Scholar 

  149. Gendrel, A.-V. et al. Smchd1-dependent and -independent pathways determine developmental dynamics of CpG island methylation on the inactive X chromosome. Dev. Cell 23, 265–279 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Escamilla-Del-Arenal, M. et al. Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2. Mol. Cell. Biol. 33, 5005–5020 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Chaumeil, J., Okamoto, I., Guggiari, M. & Heard, E. Integrated kinetics of X chromosome inactivation in differentiating embryonic stem cells. Cytogenet. Genome Res. 99, 75–84 (2002).

    CAS  PubMed  Google Scholar 

  152. Mermoud, J. E., Costanzi, C., Pehrson, J. R. & Brockdorff, N. Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J. Cell Biol. 147, 1399–1408 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Rasmussen, T. P., Mastrangelo, M. A., Eden, A., Pehrson, J. R. & Jaenisch, R. Dynamic relocalization of histone MacroH2A1 from centrosomes to inactive X chromosomes during X inactivation. J. Cell Biol. 150, 1189–1198 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Norris, D. P., Brockdorff, N. & Rastan, S. Methylation status of CpG-rich islands on active and inactive mouse X chromosomes. Mamm. Genome 1, 78–83 (1991).

    CAS  PubMed  Google Scholar 

  155. Chadwick, B. P. & Willard, H. F. Chromatin of the Barr body: histone and non-histone proteins associated with or excluded from the inactive X chromosome. Hum. Mol. Genet. 12, 2167–2178 (2003).

    CAS  PubMed  Google Scholar 

  156. Peters, A. H. F. M. et al. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat. Genet. 30, 77–80 (2002).

    CAS  PubMed  Google Scholar 

  157. Chadwick, B. P. & Willard, H. F. Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. Proc. Natl Acad. Sci. USA 101, 17450–17455 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Brown, C. J. & Willard, H. F. The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature 368, 154–156 (1994).

    CAS  PubMed  Google Scholar 

  159. Csankovszki, G., Panning, B., Bates, B., Pehrson, J. R. & Jaenisch, R. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat. Genet. 22, 323–324 (1999).

    CAS  PubMed  Google Scholar 

  160. Splinter, E. et al. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev. 25, 1371–1383 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hong, R. et al. High-resolution RNA allelotyping along the inactive X chromosome: evidence of RNA polymerase III in regulating chromatin configuration. Sci. Rep. 7, 45460 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Adrianse, R. L. et al. Perturbed maintenance of transcriptional repression on the inactive X-chromosome in the mouse brain after Xist deletion. Epigenetics Chromatin 11, 50 (2018).

    PubMed  PubMed Central  Google Scholar 

  163. Chaligné, R. et al. The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer. Genome Res. 25, 488–503 (2015).

    PubMed  PubMed Central  Google Scholar 

  164. Yang, L., Yildirim, E., Kirby, J. E., Press, W. & Lee, J. T. Widespread organ tolerance to Xist loss and X reactivation except under chronic stress in the gut. Proc. Natl Acad. Sci. USA 117, 4262–4272 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Yildirim, E. et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 152, 727–742 (2013).

    CAS  PubMed  Google Scholar 

  166. Carrel, L. & Willard, H. F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005).

    CAS  PubMed  Google Scholar 

  167. Balaton, B. P. & Brown, C. J. Escape artists of the X chromosome. Trends Genet. 32, 348–359 (2016).

    CAS  PubMed  Google Scholar 

  168. Tukiainen, T. et al. Corrigendum: landscape of X chromosome inactivation across human tissues. Nature 555, 274 (2018).

    CAS  PubMed  Google Scholar 

  169. Berletch, J. B. et al. Escape from X inactivation varies in mouse tissues. PLoS Genet. 11, e1005079 (2015).

    PubMed  PubMed Central  Google Scholar 

  170. Posynick, B. J. & Brown, C. J. Escape from X-chromosome inactivation: an evolutionary perspective. Front. Cell Dev. Biol. 7, 241 (2019).

    PubMed  PubMed Central  Google Scholar 

  171. Bellott, D. W. et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508, 494–499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Murakami, K. et al. Identification of the chromatin regions coated by non-coding Xist RNA. Cytogenet. Genome Res. 125, 19–25 (2009).

    CAS  PubMed  Google Scholar 

  173. Chow, J. C. et al. LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141, 956–969 (2010).

    CAS  PubMed  Google Scholar 

  174. Giorgetti, L. et al. Structural organization of the inactive X chromosome in the mouse. Nature 535, 575–579 (2016). This article is one of several to reveal the bipartite organization of the Xi into two megadomains and also reveals that TAD-like structures are present in facultative escapee clusters.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Qu, K. et al. Individuality and variation of personal regulomes in primary human T cells. Cell Syst. 1, 51–61 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Calabrese, J. M. et al. Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 151, 951–963 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Petersen, G. B. & Therkelsen, A. J. Number of nucleoli in female and male human cells in tissue culture. Exp. Cell Res. 28, 590–592 (1962).

    CAS  PubMed  Google Scholar 

  178. Bourgeois, C. A., Laquerriere, F., Hemon, D., Hubert, J. & Bouteille, M. New data on the in-situ position of the inactive X chromosome in the interphase nucleus of human fibroblasts. Hum. Genet. 69, 122–129 (1985).

    CAS  PubMed  Google Scholar 

  179. Borden, J. & Manuelidis, L. Movement of the X chromosome in epilepsy. Science 242, 1687–1691 (1988).

    CAS  PubMed  Google Scholar 

  180. Barton, D. E., David, F. N. & Merrington, M. The positions of the sex chromosomes in the human cell in mitosis. Ann. Hum. Genet. 28, 123–128 (1964).

    CAS  PubMed  Google Scholar 

  181. Dyer, K. A., Canfield, T. K. & Gartler, S. M. Molecular cytological differentiation of active from inactive X domains in interphase: implications for X chromosome inactivation. Cytogenet. Cell Genet. 50, 116–120 (1989).

    CAS  PubMed  Google Scholar 

  182. Belmont, A. S., Bignone, F. & Ts’o, P. O. The relative intranuclear positions of Barr bodies in XXX non-transformed human fibroblasts. Exp. Cell Res. 165, 165–179 (1986).

    CAS  PubMed  Google Scholar 

  183. Zhang, L.-F., Huynh, K. D. & Lee, J. T. Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129, 693–706 (2007).

    CAS  PubMed  Google Scholar 

  184. Rego, A., Sinclair, P. B., Tao, W., Kireev, I. & Belmont, A. S. The facultative heterochromatin of the inactive X chromosome has a distinctive condensed ultrastructure. J. Cell Sci. 121, 1119–1127 (2008).

    CAS  PubMed  Google Scholar 

  185. Eils, R. et al. Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J. Cell Biol. 135, 1427–1440 (1996).

    CAS  PubMed  Google Scholar 

  186. Kelsey, A. D. et al. Impact of flanking chromosomal sequences on localization and silencing by the human non-coding RNA XIST. Genome Biol. 16, 208 (2015).

    PubMed  PubMed Central  Google Scholar 

  187. Yang, F. et al. The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol. 16, 52 (2015).

    PubMed  PubMed Central  Google Scholar 

  188. Chen, C.-K. et al. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 354, 468–472 (2016).

    CAS  PubMed  Google Scholar 

  189. Pollex, T. & Heard, E. Nuclear positioning and pairing of X-chromosome inactivation centers are not primary determinants during initiation of random X-inactivation. Nat. Genet. 51, 285–295 (2019). This article shows that reducing pairing of the two Xic loci during early differentiation of ES cells does not affect Xist expression and monoallelic regulation.

    CAS  PubMed  Google Scholar 

  190. Teller, K. et al. A top-down analysis of Xa- and Xi-territories reveals differences of higher order structure at ≥20 Mb genomic length scales. Nucleus 2, 465–477 (2011).

    PubMed  Google Scholar 

  191. Kundu, S. et al. Polycomb repressive complex 1 generates discrete compacted domains that change during differentiation. Mol. Cell 71, 191 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Nozawa, R.-S. et al. Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway. Nat. Struct. Mol. Biol. 20, 566–573 (2013).

    CAS  PubMed  Google Scholar 

  193. Markaki, Y. et al. Xist-seeded nucleation sites form local concentration gradients of silencing proteins to inactivate the X-chromosome. bioRxiv https://doi.org/10.1101/2020.11.22.393546 (2020).

    Article  Google Scholar 

  194. McCord, R. P., Kaplan, N. & Giorgetti, L. Chromosome conformation capture and beyond: toward an integrative view of chromosome structure and function. Mol. Cell 77, 688–708 (2020).

    CAS  PubMed  Google Scholar 

  195. Kempfer, R. & Pombo, A. Methods for mapping 3D chromosome architecture. Nat. Rev. Genet. 21, 207–226 (2020).

    CAS  PubMed  Google Scholar 

  196. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Deng, X. et al. Bipartite structure of the inactive mouse X chromosome. Genome Biol. 16, 152 (2015). Rao et al. (2014) and Deng et al. (2015) reveal the bipartite organization of the Xi into two megadomains, in humans and mice.

    PubMed  PubMed Central  Google Scholar 

  198. Giacalone, J., Friedes, J. & Francke, U. A novel GC-rich human macrosatellite VNTR in Xq24 is differentially methylated on active and inactive X chromosomes. Nat. Genet. 1, 137–143 (1992).

    CAS  PubMed  Google Scholar 

  199. Chadwick, B. P. DXZ4 chromatin adopts an opposing conformation to that of the surrounding chromosome and acquires a novel inactive X-specific role involving CTCF and antisense transcripts. Genome Res. 18, 1259–1269 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Moseley, S. C. et al. YY1 associates with the macrosatellite DXZ4 on the inactive X chromosome and binds with CTCF to a hypomethylated form in some male carcinomas. Nucleic Acids Res. 40, 1596–1608 (2012).

    CAS  PubMed  Google Scholar 

  201. Horakova, A. H. et al. The mouse DXZ4 homolog retains Ctcf binding and proximity to Pls3 despite substantial organizational differences compared to the primate macrosatellite. Genome Biol. 13, R70 (2012).

    PubMed  PubMed Central  Google Scholar 

  202. Darrow, E. M. et al. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. Proc. Natl Acad. Sci. USA 113, E4504–E4512 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Froberg, J. E., Pinter, S. F., Kriz, A. J., Jégu, T. & Lee, J. T. Megadomains and superloops form dynamically but are dispensable for X-chromosome inactivation and gene escape. Nat. Commun. 9, 5004 (2018).

    PubMed  PubMed Central  Google Scholar 

  204. Andergassen, D. et al. In vivo Firre and Dxz4 deletion elucidates roles for autosomal gene regulation. eLife 8, e47214 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Fang, H. et al. Trans-and cis-acting effects of the lncRNA Firre on epigenetic and structural features of the inactive X chromosome. Nat. Commun. 11, 6053 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Bonora, G. et al. Orientation-dependent Dxz4 contacts shape the 3D structure of the inactive X chromosome. Nat. Commun. 9, 1445 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Wang, C.-Y., Colognori, D., Sunwoo, H., Wang, D. & Lee, J. T. PRC1 collaborates with SMCHD1 to fold the X-chromosome and spread Xist RNA between chromosome compartments. Nat. Commun. 10, 2950 (2019).

    PubMed  PubMed Central  Google Scholar 

  208. Tena, J. J. & Santos-Pereira, J. M. Topologically associating domains and regulatory landscapes in development, evolution and disease. Front. Cell Dev. Biol. 9, 702787 (2021).

    PubMed  PubMed Central  Google Scholar 

  209. de Wit, E. TADs as the caller calls them. J. Mol. Biol. 432, 638–642 (2020).

    PubMed  Google Scholar 

  210. Guo, F. et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res. 27, 967–988 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Teixeira da Rocha, S. et al. The influence of DNA methylation on monoallelic expression. Essays Biochem. 63, 663–676 (2019).

    Google Scholar 

  212. Xu, N., Tsai, C.-L. & Lee, J. T. Transient homologous chromosome pairing marks the onset of X inactivation. Science 311, 1149–1152 (2006).

    CAS  PubMed  Google Scholar 

  213. Bacher, C. P. et al. Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat. Cell Biol. 8, 293–299 (2006).

    CAS  PubMed  Google Scholar 

  214. Augui, S. et al. Sensing X chromosome pairs before X inactivation via a novel X-pairing region of the Xic. Science 318, 1632–1636 (2007).

    CAS  PubMed  Google Scholar 

  215. Xu, N., Donohoe, M. E., Silva, S. S. & Lee, J. T. Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nat. Genet. 39, 1390–1396 (2007).

    CAS  PubMed  Google Scholar 

  216. Donohoe, M. E., Silva, S. S., Pinter, S. F., Xu, N. & Lee, J. T. The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature 460, 128–132 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Chu, H.-P. et al. PAR-TERRA directs homologous sex chromosome pairing. Nat. Struct. Mol. Biol. 24, 620–631 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Aeby, E. et al. Decapping enzyme 1A breaks X-chromosome symmetry by controlling Tsix elongation and RNA turnover. Nat. Cell Biol. 22, 1116–1129 (2020).

    CAS  PubMed  Google Scholar 

  219. Monkhorst, K., Jonkers, I., Rentmeester, E., Grosveld, F. & Gribnau, J. X inactivation counting and choice is a stochastic process: evidence for involvement of an X-linked activator. Cell 132, 410–421 (2008).

    CAS  PubMed  Google Scholar 

  220. Gontan, C. et al. RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation. Nature 485, 386–390 (2012).

    CAS  PubMed  Google Scholar 

  221. Mutzel, V. et al. A symmetric toggle switch explains the onset of random X inactivation in different mammals. Nat. Struct. Mol. Biol. 26, 350–360 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Mutzel, V. & Schulz, E. G. Dosage sensing, threshold responses, and epigenetic memory: a systems biology perspective on random X-chromosome inactivation. Bioessays 42, 1900163 (2020).

    Google Scholar 

  223. Migeon, B. R. X-linked diseases: susceptible females. Genet. Med. 22, 1156–1174 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Twigg, S. R. F. et al. Cellular interference in craniofrontonasal syndrome: males mosaic for mutations in the X-linked EFNB1 gene are more severely affected than true hemizygotes. Hum. Mol. Genet. 22, 1654–1662 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Dibbens, L. M. et al. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat. Genet. 40, 776–781 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Libert, C., Dejager, L. & Pinheiro, I. The X chromosome in immune functions: when a chromosome makes the difference. Nat. Rev. Immunol. 10, 594–604 (2010).

    CAS  PubMed  Google Scholar 

  227. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    CAS  PubMed  Google Scholar 

  228. Arnold, A. P. & Chen, X. What does the ‘four core genotypes’ mouse model tell us about sex differences in the brain and other tissues? Front. Neuroendocrinol. 30, 1–9 (2009).

    PubMed  Google Scholar 

  229. Smith-Bouvier, D. L. et al. A role for sex chromosome complement in the female bias in autoimmune disease. J. Exp. Med. 205, 1099–1108 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Souyris, M., Mejía, J. E., Chaumeil, J. & Guéry, J.-C. Female predisposition to TLR7-driven autoimmunity: gene dosage and the escape from X chromosome inactivation. Semin. Immunopathol. 41, 153–164 (2019).

    CAS  PubMed  Google Scholar 

  231. Syrett, C. M. et al. Altered X-chromosome inactivation in T cells may promote sex-biased autoimmune diseases. JCI Insight 4, e126751 (2019).

    PubMed Central  Google Scholar 

  232. Christou, E. A. A., Banos, A., Kosmara, D., Bertsias, G. K. & Boumpas, D. T. Sexual dimorphism in SLE: above and beyond sex hormones. Lupus 28, 3–10 (2019).

    CAS  PubMed  Google Scholar 

  233. Subramanian, S. et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA 103, 9970–9975 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Deane, J. A. et al. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27, 801–810 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Pisitkun, P. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672 (2006).

    CAS  PubMed  Google Scholar 

  236. Green, N. M. & Marshak-Rothstein, A. Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin. Immunol. 23, 106–112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Souyris, M. et al. TLR7 escapes X chromosome inactivation in immune cells. Sci. Immunol. 3, eaap8855 (2018).

    PubMed  Google Scholar 

  238. Dunford, A. et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat. Genet. 49, 10–16 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank T. Pollex for critical reading of the manuscript. They apologize to all the authors whose original work they could not cite here owing to space constraints. Work in the Heard laboratory is supported by a European Research Council Advanced Investigator award (XPRESS — AdG671027). A.L. is supported by a European Union Marie Skłodowska-Curie Actions Individual Fellowship (IF-838408).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Agnese Loda or Edith Heard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks Christine Disteche and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Topologically associating domains

(TADs). Submegabase chromosomal domains in which genomic elements interact preferentially with each other.

Hi-C

A chromosome conformation capture-based method to characterize the 3D organization of the whole genome.

Facultative heterochromatin

Developmentally regulated stable silencing of parts of the genome, in the case of X-chromosome inactivation, across one of two homologous X chromosomes.

4C

A chromosome conformation capture-based method to characterize the interactions between one genomic locus of interest and the rest of the genome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loda, A., Collombet, S. & Heard, E. Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol 23, 231–249 (2022). https://doi.org/10.1038/s41580-021-00438-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-021-00438-7

  • Springer Nature Limited

This article is cited by

Navigation