Skip to main content

The Irreducible Characters for Semi-Simple Algebraic Groups and for Quantum Groups

  • Conference paper
Proceedings of the International Congress of Mathematicians

Abstract

Let G be a reductive algebraic group over an algebraically closed field \( \kappa\) of prime characteristic p. The first question that presents itself when we look at finite-dimensional representations of G is the problem of how to determine the irreducible characters. This is the problem we want to discuss in this lecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. H. Andersen,The strong linkage principle, J. Reine Angew. Math.,315 (1980), 53–59.

    MathSciNet  MATH  Google Scholar 

  2. H. H. Andersen,The Frobenius morphism on the cohomology of homogeneous vector bundles on G/B, Ann. of Math. (2),112 (1980), 113–121.

    Article  MathSciNet  Google Scholar 

  3. H. H. Andersen, J. C. Jantzen, and W. Soergel,Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p: Independence of p, Astérisque,220 (1994).

    MATH  Google Scholar 

  4. H. H. Andersen, P. Polo, and Wen K.,Representations of quantum algebras, Invent. Math.,104 (1991), 1–59.

    Article  MathSciNet  Google Scholar 

  5. AH. H. Andersen and Wen K.,Representations of quantum algebras. The mixed case, J. Reine Angew. Math.,427 (1992), 35–50.

    MathSciNet  MATH  Google Scholar 

  6. A. Beilinson and J. Bernstein,Localisation de\( g\)-modules, C. R. Acad. Sci. Paris,292 (1981), 15–18.

    MathSciNet  MATH  Google Scholar 

  7. J.-L. Brylinski and M. Kashiwara,Kazhdan-Lusztig conjecture and holonomic system, Invent. Math.,64 (1981), 387–410.

    Article  MathSciNet  Google Scholar 

  8. L. Casian,Formule de multiplicité de Kazhdan-Lusztig dans le case de Kac-Moody, C.R. Acad. Sci. Paris,310 (1990), 333–337.

    MathSciNet  MATH  Google Scholar 

  9. L. Casian,Kazhdan-Lusztig conjecture in the negative level case (Kac-Moody algebras of affine type), preprint.

    Google Scholar 

  10. C. Chevalley,Les systèmes linéaires sur G/B, Exp. 15 in: Sem. Chevalley ( Classification des groupes de Lie algébriques ), (1957), Paris.

    Google Scholar 

  11. C. W. Curtis,Representations of Lie algebras of classical type with application to linear groups, J. Math. Mech.,9 (1960), 307–326.

    MathSciNet  MATH  Google Scholar 

  12. V. Deodhar, O. Gabber, and V. Kac,Structure of some categories of infinite- dimensional Lie algebras, Adv. in Math.,45 (1982), 92–116.

    Article  MathSciNet  Google Scholar 

  13. V. G. Drinfeld,On quasitriangular quasi-Hopf algebras closely related to Gal(Q/Q), Algebra i Analiz 2, (1990), 149–181.

    Google Scholar 

  14. W. Haboush,A short proof of the Kempf vanishing theorem, Invent. Math.,56 (1980), 109–112.

    Article  MathSciNet  Google Scholar 

  15. J. E. Humphreys, Ordinary and modular representations of Chevalley groups,Lecture Notes in Math.,528 (1976), Springer, Berlin and New York.

    Book  Google Scholar 

  16. J. C. Jantzen, Representations of algebraic groups, Pure and Appl. Math.,131, (1987) Academic Press, Boston MA.

    Google Scholar 

  17. V. Kac, Infinite Dimensional Lie Algebras, Third edition, (1990), Cambridge Univ. Press, London and New York.

    Book  Google Scholar 

  18. M. Kashiwara,Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebra, in: The Grothendieck Festschrift, Vol II, Progr. Math.,87, (1990) Birkhäuser, Basel and Boston, 407–433.

    MathSciNet  MATH  Google Scholar 

  19. M. Kashiwara,Crystal base and Littelmann’s refined Demazure character formula, Duke Math. J.,71 (1993), 839–858.

    Article  MathSciNet  Google Scholar 

  20. M. Kashiwara and T. Tanisaki,Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebra II, Progr. Math.,92, (1990) Birkhäuser, Basel and Boston, 159–195.

    MATH  Google Scholar 

  21. M. Kashiwara and T. Tanisaki,Characters of the negative level highest weight modules for affine Lie algebras, preprint (1994).

    Google Scholar 

  22. S. Kato,On the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. in Math.,55 (1985), 103–130.

    Article  MathSciNet  Google Scholar 

  23. D. Kazhdan and G. Lusztig,Representations of Coxeter groups and Hecke algebras, Invent. Math.,53 (1979), 165–184.

    Article  MathSciNet  Google Scholar 

  24. D. Kazhdan and G. Lusztig,Schubert varieties and Poincaré duality, Proc. Sym- pos. Pure Math.,36 (1980), 185–203.

    MathSciNet  MATH  Google Scholar 

  25. D. Kazhdan and G. Lusztig,Tensor structures arising from affine Lie algebras I-IV, J. Amer. Math. Soc.,6 (1994), 905–947.

    Article  MathSciNet  Google Scholar 

  26. D. Kazhdan and G. Lusztig,Tensor structures arising from affine Lie algebras I-IV, J. Amer. Math. Soc.,6 (1994), 949–1011.

    Article  MathSciNet  Google Scholar 

  27. D. Kazhdan and G. Lusztig,Tensor structures arising from affine Lie algebras I-IV, J. Amer. Math. Soc.,7 (1994), 335–381.

    Article  MathSciNet  Google Scholar 

  28. D. Kazhdan and G. Lusztig,Tensor structures arising from affine Lie algebras I-IV, J. Amer. Math. Soc.,7 (1994), 383–453.

    Article  MathSciNet  Google Scholar 

  29. G. Kempf,Linear systems on homogeneous spaces, Ann. of Math (2),103 (1976), 557–591.

    Article  MathSciNet  Google Scholar 

  30. S. Kumar,Toward proof of Lusztig’s conjecture concerning negative level representations of affine Lie algebras, J. Algebra,164 (1994), 515–527.

    Article  MathSciNet  Google Scholar 

  31. G. Lusztig,Some problems in the representation theory of finite Chevalley groups, Proc. Sympos. Pure Math.,37 (1980), 313–318.

    Article  MathSciNet  Google Scholar 

  32. G. Lusztig,Modular representations and quantum groups, Contemp. Math.,82 (1989), 58–77.

    MathSciNet  MATH  Google Scholar 

  33. G. Lusztig,On quantum groups, J. Algebra 131 (1990), 466–475.

    Article  MathSciNet  Google Scholar 

  34. G. Lusztig, Introduction to quantum groups, Progr. Math.,110 (1993), Birkhäuser, Basel and Boston.

    Google Scholar 

  35. G. Lusztig,Monodromic systems on affine flag manifolds, Proc. Roy. Soc. London series A (1994),445, 231–246.

    Article  MathSciNet  Google Scholar 

  36. B. Parshall and Wang J.-P.,Quantum linear groups, Mem. Amer. Math. Soc.,439 (1991).

    Google Scholar 

  37. S. Ryom-Hansen,A q-analogue of Kempf’s vanishing theorem, preprint (1994).

    Google Scholar 

  38. W. Soergel,Kategorie O, perverse Garben und Modulen über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc.,3 (1990), 421–445.

    MathSciNet  MATH  Google Scholar 

  39. R. Steinberg,Representations of algebraic groups, Nagoya Math. J.,22 (1963), 33–56.

    Article  MathSciNet  Google Scholar 

  40. L. Thams,Two classical results in the quantum mixed case, J. Reine Angew. Math.,436 (1993), 129–153.

    MathSciNet  MATH  Google Scholar 

  41. D. Vogan, Representations of real reductive Lie groups, Progr. Math.,15 (1981), Birkhäuser, Basel and Boston.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäser Verlag, Basel, Switzerland

About this paper

Cite this paper

Andersen, H.H. (1995). The Irreducible Characters for Semi-Simple Algebraic Groups and for Quantum Groups. In: Chatterji, S.D. (eds) Proceedings of the International Congress of Mathematicians. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9078-6_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9078-6_66

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9897-3

  • Online ISBN: 978-3-0348-9078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics