Skip to main content

Topology of glycosylation in the Golgi apparatus

  • Chapter
The Golgi Apparatus

Part of the book series: Molecular and Cell Biology Updates ((MCBU))

Summary

An important post-translational modification on most cellular proteins and lipids is represented by the acquisition of oligosaccharide side chains. The Golgi apparatus (GA) of yeast, invertebrate and vertebrate cells and of plant cells fulfills major functions in the complex process of glycosylation. Studies on the enzymes involved in glycosylation have revealed the complexity of functional subcompartmentation of the GA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeijon, C. and Hirschberg, C.B. (1987) Subcellular site of synthesis of the N-acetylgalactosamine (α1–0) serine (or threonine) linkage in rat liver.J. Biol. Chem. 262: 4153–4159.

    CAS  PubMed  Google Scholar 

  • Abeijon, C., Orlean, P., Robbins, P.W. and Hirschberg, C.B. (1989) Topography of glycosylation in yeast: Characterization of GDP-mannose transport and luminal guanosine diphosphatase activaties in Golgi-like vesicles.Proc. Natl Acad. Sci. USA 86: 6935–6939.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Altmann, F., Kornfeld, G., Dalik, T., Staudacher, E. and Glössl, J. (1993) Processing of asparagine-linked oligosaccharides in insect cells. N-acetylglucosaminyltransferase I and II activities in cultured lepidopteran cells.Glycobiology 3: 619–625.

    Article  CAS  PubMed  Google Scholar 

  • Becker, C.G., Artola, A., Gerardyschahn, R., Decker, T., Welzl, H. and Schachner, M. (1996) The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation.J. Neurosci. Res. 45: 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Bergeron, J.J.M., Paiement, J., Khan, M.N. and Smith, C.E. (1985) Terminal glycosylation in rat hepatic Golgi fractions: heterogeneous locations for sialic acid and galactose acceptors and their transferases.Biochim. Biophys. Acta 821: 393–403.

    Article  CAS  PubMed  Google Scholar 

  • Berninsone, P., Lin, Z.Y., Kempner, E. and Hirschberg, C.B. (1995) Regulation of yeast Golgi glycosylation — Guanosine diphosphatase functions as a homodimer in the membrane.J. Biol. Chem. 270: 14564–14567.

    Article  CAS  PubMed  Google Scholar 

  • Bhavanandan, V.P. and Davidson, E.A. (1992) Proteoglycans: structure, synthesis, function. In: H.J. Allen and E.C. Kisailus (eds):Glycoconjugates. Composition, structure, and function. Marcel Dekker, Inc, New York, Basel, Hong Kong, pp 167–202.

    Google Scholar 

  • Bretscher, M.S. and Munro, S. (1993) Cholesterol and the Golgi apparatus.Science 261: 1280–1281.

    Article  CAS  PubMed  Google Scholar 

  • Burger, K.N.J., Vanderbijl, P. and Vanmeer, G. (1996) Topology of sphingolipid galactosyltransferases in ER and Golgi: Transbilayer movement of monohexosyl sphingolipids is required for higher glycosphingolipid biosynthesis.J. Cell Biol. 133: 15–28.

    Article  CAS  PubMed  Google Scholar 

  • Burke, J., Pettitt, J.M., Schachter, H., Sarkar, M. and Gleeson, P. (1992) The transmembrane domain and flanking sequences of (3–1,2-N-acetylglucosaminyltransferase I specify medial-Golgi localization.J. Biol. Chem. 267: 24433 –24440.

    CAS  PubMed  Google Scholar 

  • Burke, J., Pettitt, J.M., Humphris, D. and Gleeson, P.A. (1994) Medial-Golgi retention of N-acetylglucosaminyltransferase I — contribution from all domains of the enzyme.J. Biol. Chem. 269: 12049–12059.

    CAS  PubMed  Google Scholar 

  • Burke, J., Lipari, F., Igdoura, S. and Herscovics, A. (1996) TheSaccharomyces cerevisiae processing alpha 1,2mannosidase is localized in the endoplasmic reticulum, independently of known retrieval motifs.Eur. J. Cell Biol. 70: 298–305.

    CAS  PubMed  Google Scholar 

  • Camirand, A., Heysen, A., Grondin, B. and Herscovics, A. (1991) Glycoprotein biosynthesis inSaccharomyces cerevisiae. Isolation and characterization of the gene encoding a specific processing a-mannosidase.J. Biol. Chem. 266: 15120–12127.

    CAS  PubMed  Google Scholar 

  • Campadelli, G., Brandimarti, R., di Lazzaro, C., Ward, P.L., Roizman, B. and Torrisi, M.R. (1993) Fragmentation and dispersal of Golgi proteins and redistribution of glycoproteins and glycolipids processed through the Golgi apparatus after infection with Herpes simplex virus 1.Proc. Natl Acad. Sci. USA 90: 2798–2802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chammas, R., Mc Caffery, J.M., Klein, A., Ito, Y., Saucan, L., Palade, G., Farquhar, M.G. and Varki, A. (1996) Uptake and incorporation of an epitope-tagged sialic acid donor into intact rat liver Golgi compartments. Functional localization of sialyltransferase overlaps with beta-galactosyltransferase but not with sialic acid O- acetyltransferase.Molec. Biol. Cell 7: 1691–1707.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clausen, H. and Bennett, E.P. (1996) A family of UDP-Ga1NAc: polypeptide N-acetylgalactosaminyltransferases control the initiation of mucin-type O-linked glycosylation.Glycobiology 6: 635–646.

    Article  CAS  PubMed  Google Scholar 

  • Coetzee, T., Fujita, N., Dupree, J., Shi, R., Blight, A., Suzuki, K. and Popko, B. (1996) Myelination in the absence of galactocerebroside and sulfatide: Normal structure with abnormal function and regional instability.Cell 86: 209–219.

    Article  CAS  PubMed  Google Scholar 

  • Colley, K.J. (1997) Golgi localization of glycosyltransferases: more questions than answers.Glycobiology7: 113.

    Article  Google Scholar 

  • Cummings, R.D. (1992) Synthesis of asparagine-linked oligosaccharides: pathways, genetics, and metabolic regulation. In: H.J. Allen and E.C. Kisailus (eds):Glycoconjugates. Composition, structure, and function. Marcel Dekker, Inc, New York, Basel, Hong Kong, pp 333–360.

    Google Scholar 

  • Cummings, R.D., Kornfeld, S., Schneider, W.J., Hobgood, K.B., Tolleshaug, H., Brown, M.S. and Goldstein, J.L. (1983) Biosynthesis of N- and o-linked oligosaccharides of the low density lipoprotein receptor.J. Biol. Chem. 15261–15273.

    Google Scholar 

  • Dennis, J.W. (1992) Changes in glycosylation associated with malignant transformation and tumor progression. In:M. Fukuda (ed.):Cell surface carbohydrates and cell development. CRC Press, Boca Raton, pp 161–194.

    Google Scholar 

  • Deschuyteneer, M., Eckhardt, A.E., Roth, J. and Hill, R.L. (1988) The subcellular localization of apomucin and nonreducing terminal N-acetylgalactosamine in porcine submaxillar glands.J. Biol. Chem. 263: 2452–2459.

    CAS  PubMed  Google Scholar 

  • Droz, B. (1966) Elaboration de glycoprotĂ©ines dans l’appareil de Golgi des cellules hĂ©patiques chez le rat: Ă©tude radioautographique en microscopie Ă©lectronique après injections de galactose3H. C.R. Acad. Sci. Paris 262: 1766–1768.

    CAS  Google Scholar 

  • Dunphy, W.G. and Rothman, J.E. (1983) Compartmentation of asparagine-linked oligosaccharide processing in the Golgi apparatus.J. Cell Biol. 97: 270–275.

    Article  CAS  PubMed  Google Scholar 

  • Dunphy, W.G., Fries, E., Urbani, L.J. and Rothman, J.E. (1981) Early and late functions associated with the Golgi apparatus reside in distinct compartments.Proc. Natl Acad. Sci. USA 78: 7453–7456.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunphy, W.G., Brands, R. and Rothman, J.E. (1985) Attachment of terminal N-acetylglucosamine to asparagine-linked oligosaccharides occurs in central cisternae of the Golgi stack.Cell 40: 463–472.

    Article  CAS  PubMed  Google Scholar 

  • Dunphy, W.G. and Rothmann, J.E. (1985) Compartmental organization of the Golgi stack.Cell 42: 13–21.

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt, M., Muhlenhoff, M., Bethe, A., Koopman, J., Frosch, M. and Gerardy-Schahn, R. (1995) Molecular characterization of eukaryotic polysialyltransferase-l.Nature 373: 715–718.

    Article  CAS  PubMed  Google Scholar 

  • Egea, G., Franci, C., Gambus, G., Lesuffleur, T., Zweibaum, A. and Real, F.X. (1993) cis-Golgi resident proteins and 0-glycans are abnormally compartmentalized in the RER of colon cancer cells.J. Cell Sci. 105: 819–830.

    CAS  PubMed  Google Scholar 

  • Elhammer, A. and Kornfeld, S. (1984) Two enzymes involved in the biosynthesis of 0-linked oligosaccharides are localized on membranes of different densities in mouse lymphoma BW5147 cells.J. Cell Biol. 99: 327–331.

    Article  CAS  PubMed  Google Scholar 

  • Esmon, B., Esmon, P.C. and Schekman, R. (1984) Early steps in processing of yeast glycoproteins.J. Biol. Chem. 10322–10327.

    Google Scholar 

  • Fuser, R.G., Warden, M.P. and Quarles, R.H. (1995) Effects of brefeldin A on galactosphingolipid synthesis in an immortalized Schwann cell line: Evidence for different intracellular locations of galactosylceramide sulfotransferase and ceramide galactosyltransferase activities.J. Neurochem. 65: 1865–1873.

    Google Scholar 

  • Fiedler, K. and Simons, K. (1995) The role of N-glycans in the secretory pathway.Cell 81: 309–312.

    Article  CAS  PubMed  Google Scholar 

  • Foster, J.M., Yudkin, B., Lockyer, A.E. and Roberts, D.B. (1995) Cloning and sequence analysis of GmII,a Drosophila melanogaster homologue of the cDNA encoding murine Golgi alpha-mannosidase II.Gene 154: 183–186.

    Article  CAS  PubMed  Google Scholar 

  • Fox, G.B., Oconnell, A.W., Murphy, K.J. and Regan, C.M. (1995) Memory consolidation induces a transient and time-dependent increase in the frequency of neural cell adhesion molecule polysialylated cells in the adult rat hippocampus.J. Neurochem. 65: 2796–2799.

    Article  CAS  PubMed  Google Scholar 

  • Franzusoff, A. and Schekman, R. (1989) Functional compartments of the yeast Golgi apparatus are defined by thesec7 mutation.EMBO J. 8: 2695–2702.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Futerman, A.H. and Pagano, R.E. (1991) Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver.Biochem. J. 280: 295–302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gahmberg, C.G. and Tolvanen, M. (1996) Why mammalian cell surface proteins are glycoproteins.Trends Biochem. Sci. 21: 308–311.

    Article  CAS  PubMed  Google Scholar 

  • Geetha-Habib, M., Campbell, S.C. and Schwartz, N.B. (1984) Subcellular localization of the synthesis and glycosylation of chondroitin sulfate proteoglycan core protein.J. Biol. Chem. 259: 7300–7310.

    CAS  PubMed  Google Scholar 

  • Gleeson, P.A., Teasdale, R.D. and Burke, J. (1994) Targeting of proteins to the Golgi apparatus.Glycoconjugate J.11: 381–394.

    Article  CAS  Google Scholar 

  • Goldberg, D.E. and Kornfeld, S. (1983) Evidence for extensive subcellular organization of asparagine-linked oligosaccharide processing and lysosomal enzyme phosphorylation.J. Biol. Chem. 258: 3159–3165.

    CAS  PubMed  Google Scholar 

  • Graham, T R and Emr, S.D. (1991) Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeastsec18 (NSF) mutant.J. Cell Biol. 114: 207–218.

    Article  CAS  PubMed  Google Scholar 

  • Graham, T.R. and Krasnov, V.A. (1995) Sorting of yeast alpha 1,3 mannosyltransferase is mediated by a luminal domain interaction, and a transmembrane domain signal that can confer clathrin-dependent Golgi localization to a secreted protein.Molec. Biol. Cell 6: 809–824.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffiths, G. (1993) Fine structure immunocytochemistry. Springer Verlag, Berlin, pp 1–459.

    Book  Google Scholar 

  • Haddad, A., Smith, M.D., Herscovics, A., Nadler, N.J. and Leblond, C.P. (1971) Radioautographic study of in vivo and in vitro incorporation of fucose-3H into thyroglobulin by rat thyroid follicular cells.J. Cell Biol. 49: 856–877.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hahnlein, I., Hartig, W. and Bicker, G. (1996) Datura stramonium lectin staining of glial associated extracellular material in insect brains.J. Comp. Neurol. 376: 175–187.

    Article  CAS  PubMed  Google Scholar 

  • Hakomori, S. (1995) Role of gangliosides in transmembrane signalling and cell recognition. In: A. Rosenberg (ed.):Biology of the Sialic Acids. Plenum Press, New York, pp 243–259.

    Chapter  Google Scholar 

  • Hammond, C., Braakman, I. and Helenius, A. (1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control.Proc. Natl Acad. Sci. USA 91: 913–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haselbeck, A. and Tanner, W. (1983) 0-glycosylation inSaccharomyces cerevisiae is initiated at the endoplasmic reticulum.FEBS Lett. 158: 335–338.

    Article  CAS  PubMed  Google Scholar 

  • Hausler, A. and Robbins, P.W. (1992) Glycosylation inSaccharomyces cerevisiae: cloning and characterization of an alpha-1,2-mannosyltransferase structural gene.Glycobiology 2: 77–84.

    Article  CAS  PubMed  Google Scholar 

  • Hausler, A., Ballou, L., Ballou, C.E. and Robbins, P.W. (1992) Yeast glycoprotein biosynthesis: MNT1 encodes an alpha-1,2-mannosyltransferase involved in 0-glycosylation.Proc. Natl Acad. Sci. USA 89: 6846–6850.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hedman, K., Pastan, I. and Willingham, M.C. (1986) The organelles of the trans domain of the cell. Ultrastructural localization of sialoglycoconjugates usingLimax flavus agglutinin.J. Histochem. Cytochem. 34: 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  • Helenius, A., Trombetta, E.S., Hebert, G.N. and Simons, J.F. (1997) Calnexin, calreticulin and the folding of glycoproteins.Trends Cell Biol. 7: 193–200.

    Article  CAS  Google Scholar 

  • Hennet, T., Hagen, F.K., Tabak, L.A. and Marth, J.D. (1995) T-cell-specific deletion of a polypeptide Nacetylgalactosaminyltransferase gene by site-directed recombination.Proc. Natl Acad. Sci. USA 92: 12070–12074.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herscovics, A. (1969) Biosynthesis of thyroglobulin incorporation of [1-14C]galactose, [1-14C] mannose and [4,5-311] leucine into soluble proteins by rat thyroidsin vitro. Biochem. J. 112: 709–719.

    Article  CAS  PubMed  Google Scholar 

  • Herscovics, A. and Orlean, P. (1993) Glycoprotein biosynthesis in yeast.FASEB J. 7: 540–550.

    CAS  PubMed  Google Scholar 

  • Iber, H. and Sandhoff, K. (1989) Identity of GD1C, GTta and GQib synthase in Golgi vesicles from rat liver.FEBS Lett. 254: 124–128.

    Article  CAS  PubMed  Google Scholar 

  • Iber, H., van Echten, G. and Sandhoff, K. (1991) Substrate specificity of alpha 2–3-sialyltransferases in ganglioside biosynthesis of rat liver Golgi.Eur. J. Biochem. 195: 115–120.

    Article  CAS  PubMed  Google Scholar 

  • Iber, H., van Echten, G. and Sandhoff, K. (1992a) Fractionation of primary cultured cerebellar neurons: distribution of sialyltransferses involved in ganglioside biosynthesis.J. Neurochem. 58: 1533–1537.

    Article  CAS  PubMed  Google Scholar 

  • Iber, H., Zacharias, C. and Sandhoff, K. (1992b) The c-series gangliosides GT3, GT2 and Gplc are formed in rat liver Golgi by the same set of glycosyltransferases that catalyse the biosynthesis of asialo-, a-and b-series of gangliosides.Glycobiology 2: 137–142.

    Article  CAS  PubMed  Google Scholar 

  • Imperiali, B., Shannon, K.L., Unno, M. and Rickert, K.W. (1992) A Mechanistic Proposal for Asparagine-Linked Glycosylation.J. Am. Chem. Soc. 114: 7944–7945.

    Article  CAS  Google Scholar 

  • Jaeken, J., Carchon, H. and Stibler, H. (1993) The carbohydrate-deficient glycoprotein syndromes: pre-Golgi and Golgi disorders?Glycobiology 3: 423–428.

    Article  CAS  PubMed  Google Scholar 

  • Jaskiewicz, E., Zhu, G.F., Taatjes, D.J., Darling, D.S., Zwanzig, G.E. and Young, W.W. (1996) Cloned beta 1,4Nacetylgalactosaminyltransferase: Subcellular localization and formation of disulfide bonded species.Glycoconjugate J. 13: 213–223.

    Article  CAS  Google Scholar 

  • Jeckel, D., Karrenbauer, A., Burger, K.N.J., van Meer, G. and Wieland, F. (1992) Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions.J. Cell Biol. 117: 259–267.

    Article  CAS  PubMed  Google Scholar 

  • Jellinek-Kelly, S. and Herscovics, A. (1988) Glycoprotein biosynthesis inSaccharomyces cerevisiae. Purification of the a-mannosidase which removes one specific mannose residue from Man9GIcNAc.J. Biol. Chem. 263: 14757–14763.

    Google Scholar 

  • Johnson, D.C. and Spear, P.G. (1983) O-linked oligosaccharides are acquired by Herpes simplex virus glycoproteins in the Golgi apparatus.Cell 32: 987–997.

    Article  CAS  PubMed  Google Scholar 

  • Joziasse, D.H. (1992) Mammalian glycosyltransferases: Genomic organization and protein structure.Glycobiology 2: 271–277.

    Article  CAS  PubMed  Google Scholar 

  • Kerscher, S., Albert, S., Wucherpfennig, D., Heisenberg, M. and Schneuwly, S. (1995) Molecular and genetic analysis of theDrosophila mas-1 (mannosidase-1) gene which encodes a glycoprotein processing alpha 1,2mannosidase.Devl. Biol. 168: 613–626.

    Article  CAS  Google Scholar 

  • Kimura, J.H., Lohmander, L.S. and Hascall, V.C. (1984) Studies on the biosynthesis of cartilage proteoglycan in a model system of cultured chondrocytes from the Swarm rat chondrosarcoma.J. Cell Biochem. 26: 261–278.

    Article  CAS  PubMed  Google Scholar 

  • Kingsley, D.M., Kozarsky, K.F., Hobbie, L. and Krieger, M. (1986) Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GaINAc 4-epimerase deficient mutant.Cell 44: 749–759.

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa, H. and Paulson, J.C. (1994) Differential expression of five sialyltransferase genes in human tissues.J. Biol. Chem. 269: 17872–17878.

    CAS  PubMed  Google Scholar 

  • Kleene, R. and Berger, E.G. (1993) The molecular and cell biology of glycosyltransferases.Biochim. Biophys. Acta 1154: 283–325.

    Article  CAS  PubMed  Google Scholar 

  • Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides.Ann. Rev. Biochem. 54: 631–664.

    Article  CAS  PubMed  Google Scholar 

  • Kornfeld, S. and Mellman, I. (1989) The biogenesis of lysosomes.Ann. Rev. Cell Biol. 5: 483–525.

    Article  CAS  PubMed  Google Scholar 

  • Kozarsky, K., Kingsley, D. and Krieger, M. (1988) Use of a mutant cell line to study the kinetics and function of 0-linked glycosylation of low density lipoprotein receptors.Proc. Natl Acad. Sci. USA 85: 4335–4339.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krijnse-Locker, J., Ericsson, M., Rottier, P.J.M. and Griffiths, G. (1994) Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step.J. Cell Biol. 124: 55–70.

    Article  CAS  PubMed  Google Scholar 

  • Kundu, S.K. (1992) Glycolipids: structure, synthesis, function. In:H.J. Allen and E.C. Kisailus (eds):Glycoconjugates. Composition, structure and function. Marcel Dekker, Inc, New York, Basel, Hong Kong, pp 203–262.

    Google Scholar 

  • Lackie, P.M., Zuber, C. and Roth, J. (1994) Polysialic acid of the neural cell adhesion molecule (N-CAM) is widely expressed during organogenesis in mesodermal and endodermal derivatives.Differentiation 57: 119–131.

    Article  CAS  PubMed  Google Scholar 

  • Lannert, H., Bunning, C., Jeckel, D. and Wieland, F. (1994) Lactosylceramide is synthesized in the lumen of the Golgi apparatus.FEBS Lett. 342: 91–96.

    Article  CAS  PubMed  Google Scholar 

  • Lasky, L.A. (1995) Selectin-carbohydrate interactions and the initiation of the inflammatory response.Ann. Rev. Biochem. 64: 113–139.

    Article  CAS  PubMed  Google Scholar 

  • Lee, E.U., Roth, J. and Paulson, J.C. (1989) Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of (3-galactoside a-2,6-sialyltransferase.J. Biol. Chem. 264: 13848–13855.

    CAS  PubMed  Google Scholar 

  • Lehle, L., Bauer, F. and Tanner, W. (1977) The formation of glycosidic bonds in yeast glycoproteins. Intracellular localisation of the reactions.Arch. Mikrobiol. 114: 77–81.

    Article  CAS  Google Scholar 

  • Lehle, L. and Tanner, W. (1995) Protein glycosylation in yeast. In:J. Montreuil J. J.F.G. Vliegenthart, H. Schachter (eds):Glycoproteins. Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo, pp 475–509.

    Chapter  Google Scholar 

  • Lubas, W. and Spiro, R. (1987) Golgi endo-a-D-mannosidase from rat liver, a novel N-linked carbohydrate unit processing enzyme.J. Biol. Chem. 262: 3775–3781.

    CAS  PubMed  Google Scholar 

  • Lubas, W.A. and Spiro, R.G. (1988) Evaluation of the role of rat liver endo-a-mannosidase in processing N-linked oligosaccharides.J. Biol. Chem. 263: 3571–3578.

    Google Scholar 

  • Lucocq, J.M., Berger, E.G. and Roth, J. (1987) Detection of terminal N-linked N-acetylglucosaminidase residues in the Golgi apparatus using galactosyltransferase and endoglucosaminidase F/peptide N-glycosidase F: adaption of a biochemical approach to electron microscopy.J. Histochem. Cytochem. 35: 67–74.

    Article  CAS  PubMed  Google Scholar 

  • Lussier, M., Sdicu, A.M., Ketela, T. and Bussey, H. (1995) Localization and targeting of theSaccharomyces cerevisiae Kre2p/Mntlp alpha 1,2-mannosyltransferase to a medial-Golgi compartment.J. Cell Biol. 131: 913–927.

    Article  CAS  PubMed  Google Scholar 

  • Lutz, M.S., Jaskiewicz, E., Darling, D.S., Furukawa, K. and Young, W.W. (1994) Cloned beta 1,4N-acetylgalactosaminyltransferase synthesizes G(A2) as well as gangliosides G(M2) and G(D2). G(M3) synthesis has priority over G(A2) synthesis for utilization of lactosylceramide substrate in vivo.J. Biol. Chem. 269: 29227–29231.

    CAS  PubMed  Google Scholar 

  • Ma, J.Y. and Colley, K.J. (1996) A disulfide-bonded dimer of the Golgi beta-galactoside alpha 2,6-sialyltransferase is catalytically inactive yet still retains the ability to bind galactose.J. Biol. Chem. 271: 7758–7766.

    Article  CAS  PubMed  Google Scholar 

  • Marth, J.D. (1996) Complexity in 0-linked oligosaccharide biosynthesis engendered by multiple polypeptide Nacetylgalactosaminyltransferases.Glycobiology 6: 701–705.

    Article  CAS  PubMed  Google Scholar 

  • März, L., Altmann, F., Staudacher, E. and Kubelka, V. (1995) Protein glycosylation in insects. In: J. Montreuil J. J.F.G. Vliegenthart, H. Schachter (eds):Glycoproteins. Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo, pp 543–563.

    Chapter  Google Scholar 

  • Masibay, A.S., Balaji, P.V., Boeggeman, E.E. and Qasba, P.K. (1993) Mutational analysis of the Golgi retention signal of bovine (3–1,4-galactosyltransferase.J. Biol. Chem. 268, 9908–9916.

    CAS  PubMed  Google Scholar 

  • Maxzud, M.K., Daniotti, J.L. and Maccioni, H.J.F. (1995) Functional coupling of glycosyltransfer steps for synthesis of gangliosides in Golgi membranes from neural retina cells.J. Biol. Chem. 270: 20207–20214.

    Article  CAS  PubMed  Google Scholar 

  • Metzler, M., Gertz, A., Sarkar, M., Schachter, H., Schrader, J.W. and Marth, J.D. (1994) Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development.EMBO J. 13: 2056–2065.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mitchell, T. and Hardingham, T. (1982) Monensin inhibits synthesis of proteoglycan but not of hyaluronate in chondrocytes.Biochem. J. 202: 249–254.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moore, S.E. and Spiro R. G. (1990) Demonstration that Golgi endo-a-mannosidase provides a glucosidase-independent pathway for the formation of complex N-linked oligosaccharides of glycoproteins.J. Biol. Chem. 265: 13104–13112.

    CAS  PubMed  Google Scholar 

  • Moore, S.E. and Spiro, R.G. (1992) Characterization of the endomannosidase pathway for the processing of N-linked oligosaccharides in glucosidase II-deficient and parent mouse lymphoma cells.J. Biol. Chem. 267: 844–351.

    Google Scholar 

  • Moremen, K.W., Trimble, R.B. and Herscovics, A. (1994) Glycosidases of the asparagine-linked oligosaccharide processing pathway.Glycobiology 4: 113–125.

    Article  CAS  PubMed  Google Scholar 

  • Munro, S. (1991) Sequences within and adjacent to the transmembrane segment of a-2,6-sialyltransferase specify Golgi retention.EMBO J. 10: 3577–3588.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Munro, S. (1995a) A comparison of the transmembrane domains of Golgi and plasma membrane proteins.Biochem. Soc. Trans. 23: 527–530.

    Article  CAS  PubMed  Google Scholar 

  • Munro, S. (1995b) An investigation of the role of transmembrane domains in Golgi protein retention.EMBO J. 14: 4695–4704.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muramatsu, T. (1992) Early embryogenesis. In: M. Fukuda (ed.):Cell surface carbohydrates and cell development. CRC Press, Boca Raton, pp 239–256.

    Google Scholar 

  • Murphy, K.J., Oconnell, A.W. and Regan, C.M. (1996) Repetitive and transient increases in hippocampal neural cell adhesion molecule polysialylation state following multitrial spatial training.J. Neurochem. 67: 1268–1274.

    Article  CAS  PubMed  Google Scholar 

  • Myers, M.A., Healy, M.J. and Oakeshott, J.G. (1996) Mutational analysis of N-linked glycosylation of esterase 6 inDrosophila melanogaster. Biochem. Genet. 34: 201–218.

    Article  CAS  PubMed  Google Scholar 

  • Nagai, Y. and Iwamori, M. (1995) Cellular biology In: of gangliosides. A. Rosenberg (ed.):Biology of the sialic acids. Plenum Press, New York, pp 197–241.

    Chapter  Google Scholar 

  • Nakayama, J., Fukuda, M.N., Fredette, B., Ranscht, B. and Fukuda, M. (1995) Expression cloning of a human polysialyltransferase that forms the polysialylated neural cell adhesion molecule present in embryonic brain.Proc. Natl Acad. Sci. USA 92: 7031–7035.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neutra, M. and Leblond, C.P. (1966a) Radioautographic comparison of the uptake of galactose3H and glucose-3H in the Golgi region of various cells secreting glycoproteins or mucopolysaccharides.J. Cell Biol. 30: 137–150.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neutra, M. and Leblond, C.P. (1966b) Synthesis of the carbohydrate of mucus in the Golgi complex as shown by electron microscope autoradiography of goblet cells from rats injected with glucose-3H.J. Cell Biol. 30: 119–136.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nilsson, T., Pypaert, M., Hoe, M.E., Slusarewicz, P., Berger, E.G. and Warren, G. (1993a) Overlapping distribution of two glycosyltransferases in the Golgi apparatus of HeLa cells.J. Cell Biol. 120: 5–13.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, T., Slusarewicz, P., Hoe, M.H. and Warren, G. (1993b) Kin recognition: a model for the retention of Golgi enzymes.FEBS Lett. 330: 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, T., Hoe, M.H., Slusarewicz, P., Rabouille, C., Watson, R., Hunte, F., Watzele, G., Berger, E.G. and Warren, G. (1994) Kin recognition between medial Golgi enzymes in HeLa cells.EMBO J. 13: 562–574.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nilsson, T., Rabouille, C., Hui, N., Watson, R. and Warren, G. (1996) The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the Golgi apparatus in HeLa cells.J. Cell Sci. 109: 1975–1989.

    CAS  PubMed  Google Scholar 

  • Nuwayhid, N., Glaser, J., Johnson, J., Conrad, H., Hauser, S. and Hirschberg, C. (1986) Xylosylation and glucuronosylation reactions in rat liver Golgi apparatus and endoplasmic reticulum.J. Biol. Chem. 261: 12936–12941.

    CAS  PubMed  Google Scholar 

  • Parker, G.F., Williams, P.J., Butters, D.J. and Roberts, D.B. (1991) Detection of the lipid-linked precursor oligosaccharide of N-linked protein glycosylation inDrosophila melanogaster. FEBS Lett. 290: 58–60.

    Article  CAS  PubMed  Google Scholar 

  • Parker, C.G., Fessier, L.I., Nelson, R.E. and Fessier, J.H. (1995)Drosophila UDP-glucose:glycoprotein glucosyltransferase: Sequence and characterization of an enzyme that distinguishes between denatured and native proteins.EMBO J. 14: 1294–1303.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pascale, M.C., Erra, M.C., Malagolini, N., Serafini-Cessi, F., Leone, A. and Bonatti, S. (1992) Post-translational processing of an 0-glycosylated protein, the human CD8 glycoprotein, during the intracellular transport to the plasma membrane.J. Biol. Chem. 267: 25196–25202.

    CAS  PubMed  Google Scholar 

  • Paulson, J.C. (1989) Glycoproteins: what are the sugar chains for?Trends Biochem. Sci. 14: 272–276.

    Article  CAS  PubMed  Google Scholar 

  • Paulson, J.C. and Colley, K.J. (1989) Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation.J. Biol. Chem. 164, 17615–17618.

    Google Scholar 

  • Paulson, J., Weinstein, J. and Schauer, A. (1989) Tissue specific expression of sialyltransferases.J. Biol. Chem. 264: 10931–10934.

    CAS  PubMed  Google Scholar 

  • Perez-Villar, J., Hidalgo, J. and Velasco, A. (1991) Presence of terminal N-acetylgalactosamine residues in subregions of the endoplasmic reticulum is influenced by cell differentiation in culture.J. Biol. Chem. 266: 23967–23976.

    Google Scholar 

  • Phillips, M.L., Nudelman, E., Gaeta, F.C.A., Perez, M., Singhal, A.K., Hakomori, S. and Paulson, J.C. (1990) ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand.Science 250: 1130–1132.

    Article  CAS  PubMed  Google Scholar 

  • Pohlentz, G., Klein, D., Schwarzmann, G., Schmitz, D. and Sandhoff, K. (1988) Both GA2, GM2 and GD2 syntheses and GM1b, GD1a and GTlb syntheses are single enzymes in Golgi vesicles from rat liver.Proc. Natl Acad. Sci.USA 85: 7044–7048.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Preuss, D., Mulholland, J., Franzusoff, A., Segev, N. and Botstein, D. (1992) Characterization of the Sacharomyces cerevisiae Golgi complex through the cell cycle by immunoelectron microscopy.Molec. Biol. Cell 3: 789–803.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rabouille, C., Hui, N., Hunte, F., Kieckbusch, R., Berger, E.G., Warren, G. and Nilsson, T. (1995) Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides.J. Cell Sci. 108: 1617–1627.

    CAS  PubMed  Google Scholar 

  • Rambourg, A., Hernandez, W. and Leblond, C. (1969) Detection of complex carbohydrates in the Golgi apparatus of rat cells.J. Cell Biol. 40: 395–414.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rambourg, A., Clermont, Y., Jackson, C.L. and Kepes, F. (1995a) Effects of brefeldin A on the three-dimensional structure of the Golgi apparatus in a sensitive strain ofSaccharomyces cerevisiae. Anat. Rec. 241: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Rambourg, A., Clermont, Y., Ovtracht, L. and Kepes, F. (1995b) Three-dimensional structure of tubular networks, presumably Golgi in nature, in various yeast strains: A comparative study.Anat. Rec. 243: 283–293.

    Article  CAS  PubMed  Google Scholar 

  • Rambourg, A., Gachet, E., Clermont, Y. and Kepes, F. (1996) Modifications of the Golgi apparatus inSaccharomyces cerevisiae lacking microtubules.Anat. Rec. 246: 162–168.

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe, A., Fryer, P.R. and Hardingham, T.E. (1985) Proteoglycan biosynthesis in chondrocytes: Protein A-gold localization of proteoglycan protein core and chondroitin sulfate within Golgi subcompartments.J. Cell Biol. 101: 2355–2365.

    Article  CAS  PubMed  Google Scholar 

  • Reason, A.J., Dell, A., Romero, P.A. and Herscovics, A. (1991) Specificity of the mannosyltransferase which initiates outer chain formation of inSaccharomyces cerevisiae. Glycobiology 1: 387–391.

    Article  CAS  PubMed  Google Scholar 

  • Regan, C. and Fox, G. (1995) Polysialylation as a regulator of neural plasticity in rodent learning and aging.Neurochem. Res. 20: 593–598.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, H.C., Telser, A. and Dorfman, A. (1966) Studies on the biosynthesis of the linkage region of chondroitin sulphate-protein complex.Proc. Natl Acad. Sci. USA 56: 1859–1866.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosales-Fritz, V.M., Maxzud, M.K. and Maccioni, H.J.F. (1996) GT3 synthesis in the proximal Golgi occurs in a compartment different from those for GD3 and GM3 synthesis.J. Neurochem. 67: 1393–1400.

    Article  CAS  PubMed  Google Scholar 

  • Roth, J. (1984) Cytochemical localization of terminal N-acetyl-D-galactosamine residues in cellular compartments of intestinal goblet cells: Implications for the topology of 0-glycosylation.J. Cell Biol. 98: 399–406.

    Article  CAS  PubMed  Google Scholar 

  • Roth, J. (1989) Postembedding labelling on Lowicryl K4M tissue sections: detection and modification of cellular components. In:A.M. Tartakoff (ed.):Vesicular Transport. Methods Cell Biol. San Diego, Academic Press, vol. 31, pp 513–551.

    Google Scholar 

  • Roth, J. and Berger, E.G. (1982) Immunocytochemical demonstration of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase intrans-Golgi cisternae.J. Cell Biol. 93: 223–229.

    Article  CAS  PubMed  Google Scholar 

  • Roth, J., Taatjes, D.J., Lucocq, J.M., Weinstein, J. and Paulson, J.C. (1985) Demonstration of an extensivetrans-tubular network continuous with the Golgi apparatus cisternal stack that may function in glycosylation.Cell 43; 287–295.

    Article  CAS  PubMed  Google Scholar 

  • Roth, J., Taatjes, D.J., Weinstein, J., Paulson, J.C., Greenwell, P. and Watkins, W.M. (1986) Differential subcompartmentation of terminal glycosylation in the Golgi apparatus of intestinal absorptive and goblet cells.J. Biol. Chem. 261: 14307 – 143 12.

    CAS  PubMed  Google Scholar 

  • Roth, J., Greenwell, P. and Watkins, W.M. (1988) N-acetylgalactosaminyltransferase and blood group A substance in the trans-tubular network of the Golgi appartus and mucus of intestinal goblet cells.Eur. J. Cell Biol. 46: 105–112.

    CAS  PubMed  Google Scholar 

  • Roth, J., Kempf, A., Reuter, G., Schauer, R. and Gehring, W.J. (1992) Occurrence of sialic acids inDrosophila melanogaster. Science 256: 673–5.

    CAS  Google Scholar 

  • Roth, J., Zuber, C., Komminoth, P., Scheidegger, E.P., Warhol, M.J., Bitter-Suermann, D. and Heitz, P.U. (1993) Expression of polysialic acid in human tumors and its significance for tumor growth. In: J. Roth, U. Rutishauser, F.T. Troy (eds):Polysialic acid: from microbes to man. Birkhäuser, Basel, Boston, Berlin, pp 335–348.

    Google Scholar 

  • Roth, J., Wang, Y., Eckhardt, A.E. and Hill, R.L. (1994) Subcellular localization of the UDP-Ga1NAc: polypeptide N-acetylgalactosaminyltransferase mediated 0-glycosylation reaction in the submaxillary gland.Proc. Natl Acad. Sci. USA 91, 8935–8939.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruoslahti, E. (1988) Structure and biology of proteoglycans.Ann. Rev. Cell Biol. 4: 229–255.

    Article  CAS  PubMed  Google Scholar 

  • Sadler, J.E. (1984) Biosynthesis of glycoproteins: formation of 0-linked oligosaccharides. In: V. Ginsberg, P.W. Robbins (eds):Biology of carbohydrates. John Wiley & Sons, New York, pp 199–288.

    Google Scholar 

  • Sata, T., Zuber, C. and Roth, J. (1990) Lectin-digoxigenin conjugates: a new hapten system for glycoconjugate cytochemistry.Histochemistry 94: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Sato, A. and Spicer, S.S. (1982) Ultrastructural visualization of galactosyl residues in various alimentary epithelial cells with the peanut lectin-horseradish peroxidase procedure.Histochemistry 73: 607–624.

    Article  CAS  PubMed  Google Scholar 

  • Schachter, H. (1995) Glycosyltransferases involved in the synthesis of N-glycan antenna. In: J. Montreuil, H. Schachter, J.F.G. Vliegenthart (eds):Glycoproteins. Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo, pp 153–259.

    Chapter  Google Scholar 

  • Schachter, H. and Brockhausen, I. (1992) The biosynthesis of serine (threonine)-N-acetylgalactosamine-linked carbohydrate moities. In:H.J. Allen, E.C. Kisailus (eds):Glycoconjugates. Composition,structure,and function. Marcel Dekker, Inc., New York, Basel, Hong Kong, pp 263–332.

    Google Scholar 

  • Scheiffele, P., Peranen, J. and Simons, K. (1995) N-glycans as apical sorting signals in epithelial cells.Nature 378: 96–98.

    Article  CAS  PubMed  Google Scholar 

  • Schweizer, A., Clausen, H., van Meer, G. and Hauri, H.P. (1994) Localization of O-glycan initiation, sphingomyelin synthesis, and glucosylceramide synthesis in Vero cells with respect to the endoplasmic reticulum-Golgi intermediate compartment.J. Biol. Chem. 269: 4035–4042.

    CAS  PubMed  Google Scholar 

  • Serafini-Cessi, F., Dall’Olio, F., Malagolini, N. and Campadelli-Fiume, G. (1989) Temporal aspects of O-glycosylation of glycoprotein C from Herpes simplex virus type 1.Biochem. J. 262: 479–484.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sjoberg, E.R. and Varki, A. (1993) Kinetic and spatial interrelationships between ganglioside glycosyltransferases and 0-acetyltransferase(s) in human melanoma cells.J. Biol. Chem. 268: 10185–10196.

    CAS  PubMed  Google Scholar 

  • Sjoberg, E.R., Kitagawa, H., Glushka, J., van Halbeek, H. and Paulson, J.C. (1996) Molecular cloning of a developmentally regulated N-acetylgalactosamine alpha 2,6-sialyltransferase specific for sialylated glycoconjugates.J. Biol. Chem. 271: 7450–7459.

    Article  CAS  PubMed  Google Scholar 

  • Spiro, R.G., Zhu, Q., Bhoyroo, V. and Soling, H.D. (1996) Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi.J. Biol. Chem. 271: 11588 –11594.

    Article  CAS  PubMed  Google Scholar 

  • Stagljar, I., Aebi, M. and Heesen, S.T. (1995) PCR-mediated cloning and sequencing of the DmOST50 gene, a WBPI/AvOST50/0ST48 homologue, fromDrosophila melanogaster. Gene 158: 209–212.

    CAS  PubMed  Google Scholar 

  • Stanley, P. and Ioffe, E. (1995) Glycosyltransferase mutants: Key to new insights in glycobiology.FASEB J. 9: 1436–1444.

    CAS  PubMed  Google Scholar 

  • Staudacher, E., Altmann, F., Glossl, J., März, L., Schachter, H., Kamerling, J.P., Hard, K. and Vliegenthart, J.F. (1991) GDP-fucose: beta-N-acetylglucosamine (Fuc to (Fuc alpha 1–6GlcNAc)-Asn-peptide)alpha 1–3-fucosyltransferase activity in honeybee (Apis mellifica) venom glands. The difucosylation of asparagine-bound N-acetylglucosamine.Eur. J. Biochem. 199: 745–751.

    Article  CAS  PubMed  Google Scholar 

  • Staudacher, E., Kubelka, V. and März, L. (1992) Distinct N-glycan fucosylation potentials of the three lepidopteran cell lines.Eur. J. Biochem. 207: 987–993.

    Article  CAS  PubMed  Google Scholar 

  • Stoolman, L.M. (1989) Adhesion molecules controlling lymphocyte migration.Cell 56: 907–910.

    Article  CAS  PubMed  Google Scholar 

  • Strahl-Bolsinger, S. and Tanner, W. (1991) Protein 0-glycosylation inSaccharomyces cerevisiae. Purification and characterization of the dolichyl-phosphate-D-mannose-protein O-D-mannosyltransferase.Eur. J. Biochem. 196: 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Strous, G.J., Kerkhof, P.V., Willemsen, R., Geuze, H.J. and Berger, E.G. (1983) Transport and topology of galactosyltransferase in endomembranes of HeLa cells.J. Cell Biol. 97: 723–727.

    Article  CAS  PubMed  Google Scholar 

  • Taatjes, D.J., Roth, J., Weinstein, J., Paulson, J.C., Shaper, N.L. and Shaper, J.H. (1987) Codistribution of galactosyl-and sialyltransferase: reorganization of trans Golgi apparatus elements in hepatocytes in intact liver and cell culture.Eur. J. Cell Biol. 44: 187–194.

    CAS  PubMed  Google Scholar 

  • Taatjes, D.J., Roth, J., Weinstein, J. and Paulson, J.C. (1988) Post-Golgi apparatus localization and regional expression of intestinal sialyltransferase: demonstration with epitope-purified antibodies.J. Biol. Chem. 263: 6302–6309.

    CAS  PubMed  Google Scholar 

  • Taatjes, D.J., Roth, J., Shaper, N.I. and Shaper, J.H. (1992) Immunocytochemical localization of (3–1,4-galactosyltransferase in epithelial cells from bovine tissues using monoclonal antibodies.Glycobiology 2: 579–589.

    Article  CAS  PubMed  Google Scholar 

  • Tabas, I. and Kornfeld, S. (1979) Purification and characterization of a rat liver Golgi a-mannosidase capable of processing asparagine-linked oligosaccharides.J. Biol. Chem. 254: 11655–11663.

    CAS  PubMed  Google Scholar 

  • Tan, J., Dunn, J., Jaeken, J. and Schachter, H. (1996) Mutations in the MGAT2 gene controlling complex N-glycan synthesis cause carbohydrate-deficient glycoprotein syndrome type II, an autosomal recessive disease with defective brain development.Am. J. Hum. Genet. 59: 810–817.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tartakoff, A.M. (1983) The confined function model of the Golgi complex: center for ordered processing of biosynthetic products of the rough endoplasmic reticulum.Int. Rev. Cytol. 85: 221–252.

    Article  CAS  PubMed  Google Scholar 

  • Teasdale, R.D., D’Agostaro, G. and Gleeson, P.A. (1992) The signal for Golgi retention of bovine 13–1,4-galactosyltransferase is in the transmembrane domain.J. Biol. Chem. 267: 4084–4096.

    CAS  PubMed  Google Scholar 

  • Teasdale, R.D., Matheson, F. and Gleeson, P.A. (1994) Post-translational modifications distinguish cell surface from Golgi-retained beta 1,4 galactosyltransferase molecules. Golgi localization involves active retention.Glycobiology 4: 917–928.

    Article  CAS  PubMed  Google Scholar 

  • Thyberg, J. and Moskalewski, S. (1992) Reorganization of the Golgi complex in association with mitosis: redistribution of mannosidase-II to the endoplasmic reticulum and effects of Brefeldin-A.J. Submicrosc. Cytol. Pathol. 24: 495 –508.

    CAS  PubMed  Google Scholar 

  • Tooze, S.A., Tooze, J. and Warren, G. (1988) Site of addition of N-acetylgalactosamine to the El glycoprotein of mouse hepatitis virus-A59.J. Cell Biol. 106: 1475–1487.

    Article  CAS  PubMed  Google Scholar 

  • Tretter, V., Altmann, F. and März, L. (1991) Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha 1–3 to the asparagine-linked N-acetylglucosamine residue.Eur. J. Biochem. 199: 647–652.

    Article  CAS  PubMed  Google Scholar 

  • Trinchera, M. and Ghidoni, R. (1989) Two glycosphingolipid sialyltransferases are localized in different sub-Golgi compartments in rat liver.J. Biol. Chem. 264: 15766–15769.

    CAS  PubMed  Google Scholar 

  • Trinchera, M., Pirovano, B. and Ghidoni, R. (1990) Sub-Golgi distribution in rat liver of CMP-NeuAc:GM3- and CMP-NeuAc:GTtb a-2–8sialyltransferases and comparison with the distribution of the other glycosyltransferases involved in ganglioside biosynthesis.J. Biol. Chem. 265: 28242–28247.

    Google Scholar 

  • Trinchera, M., Fabbri, M. and Ghidoni, R. (1991) Topography of glycosyltransferses involved in the initial glycosylations of gangliosides.J. Biol. Chem. 266: 20907–20912.

    CAS  PubMed  Google Scholar 

  • Tulsiani, D.R. and Touster, O. (1988) The purification and characterization of mannosidase IA from rat liver Golgi membranes.J. Biol. Chem. 263: 5408–5417.

    CAS  PubMed  Google Scholar 

  • Tulsiani, D., Opheim, D. and Touster, O. (1977) Purification and characterization of a-D-mannosidase from rat liver Golgi membranes.J. Biol. Chem. 252: 3227–3233.

    CAS  PubMed  Google Scholar 

  • Tulsiani, D.R.P., Hubbard, S.C., Robbins, P.W. and Touster, O. (1982) a-D-mannosidases of rat liver Golgi membranes. Mannosidase II is the GlcNAc Mans-cleaving enzyme in glycoprotein biosynthesis and mannosidases IA and IB are the enzymes converting Man9 precursors to Mans intermediates.J. Biol. Chem. 257: 3660–3668.

    CAS  PubMed  Google Scholar 

  • van den Eijnden, D. and Joziasse, D.H. (1993) Enzymes associated with glycosylation.Curr. Struct. Biol. 3: 711–721.

    Article  Google Scholar 

  • van Echten, G. and Sandhoff, K. (1993) Ganglioside metabolism. Enzymology, topology, and regulation.J. Biol. Chem. 268: 5341–5344.

    PubMed  Google Scholar 

  • van Echten, G., Iber, H., Stotz, H., Takatsuki, A. and Sandhoff, K. (1990) Uncoupling of ganglioside biosynthesis by brefeldin A.Eur. J. Cell Biol. 51: 135–139.

    PubMed  Google Scholar 

  • Varki, A. (1993) Biological roles of the oligosaccharides: all of the theories are correct.Glycobiology 3: 97–130.

    Article  CAS  PubMed  Google Scholar 

  • Velardo, M.A., Bretthauer, R.K., Boutaud, A., Reinhold, B., Reinhold, V.N. and Castellino, F.J. (1993) The presence of UDP-N-acetylglucosamine:alpha-3-D-mannoside beta 1,2-N-acetylglucosaminyltransferase I activity in Spodoptera frugiperda cells (IPLB-SF-21AE) and its enhancement as a result of baculovirus infection.J. Biol. Chem. 268: 17902–17907.

    CAS  PubMed  Google Scholar 

  • Velasco, A., Hendricks, L., Moreman, K.W., Tulsiani, D.R.P., Touster, O. and Farquhar, M.G. (1993) Cell type-dependent variations in the subcellular distribution of a-mannosidases I and II.J. Cell Biol. 122: 39–51.

    Article  CAS  PubMed  Google Scholar 

  • Walz, G., Aruffo, A., Kolanus, W., Bevilacqua, M. and Seed, B. (1990) Recognition by ELAM-1 of the sialyl Lex determinant on myeloid and tumor cells.Science 250: 1132–1135.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Abernethy, J.L., Eckhardt, A.E. and Hill, R.L. (1992) Purification and characterization of a UDPGaINAc:polypeptide N-acetylgalactosaminyltransferase specific for glycosylation of threonine residues.J. Biol. Chem. 267: 12709–12716.

    CAS  PubMed  Google Scholar 

  • Warnock, D.E., Lutz, M.S., Blackburn, W.A., Young, W.W. and Baenziger, J.U. (1994) Transport of newly synthesized glucosylceramide to the plasma membrane by a non-Golgi pathway.Proc. Natl Acad. Sci. USA 91: 2708–2712.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weng, S. and Spiro, R.G. (1996) Evaluation of the early processing routes of N-linked oligosaccharides of glycoproteins through the characterization of Man(8)GlcNAc(2) isomers: Evidence that endomannosidase functions in vivo in the absence of a glucosidase blockade.Glycobiology 6: 861–868.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel, M.G., Wetzel, B.K. and Spicer, S.S. (1966) Ultrastructural localization of acid mucosubstances in the mouse colon with iron-containing stains.J. Cell Biol. 30: 299–315.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitters, E.A., McGee, T.P. and Bankaitis, V.A. (1994) Purification and characterization of a late Golgi compartment fromSaccharomyces cerevisiae. J. Biol. Chem. 269: 28106–28117.

    CAS  PubMed  Google Scholar 

  • Whur, P., Herscovics, A. and Leblond, C.P. (1969) Radioautographic visualization of the incorporation of galactose-3H and mannose-3H by rat thyroids in vitro in relation to the stages of thyroglobulin synthesis.J. Cell Biol. 43: 289–311.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams, P.J., Wormald, M.R., Dwek, R.A., Rademacher, T.W., Parker, G.F. and Roberts, D.B. (1991) Characterisation of oligosaccharides fromDrosophila melanogaster glycoproteins.Biochem. Biophys. Acta 1075: 146–153.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, B.S., Palade, G.E. and Farquhar, M.G. (1993) Endoplasmic reticulum through Golgi transport assay based on 0-glycosylation of native glycophorin in permeabilized erythroleukemia cells: role for Gi3.Proc. Nall Acad. Sci. USA 90: 1681–1685.

    Article  CAS  Google Scholar 

  • Yamaguchi, N. and Fukuda, M. (1995) Golgi retention mechanism of 13–1,4-galactosyltransferase: membrane-spanning domain-dependent homodimerization and association with a-and G3-tubulins.J. Biol. Chem. 270: 12170–12176.

    Article  CAS  PubMed  Google Scholar 

  • Young. W.W. Jr., Lutz, M.S. Mills, S.E. and Lechler-Osborn, S. (1990) Use of brefeldin A to define sites of glycosphinglipid synthesis: GA2/GM2/GD2 synthase is trans to the brefeldin A block.Proc. Natl Acad. Sci. USA 87: 6838–6842.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this chapter

Cite this chapter

Roth, J. (1997). Topology of glycosylation in the Golgi apparatus. In: Berger, E.G., Roth, J. (eds) The Golgi Apparatus. Molecular and Cell Biology Updates. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8876-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8876-9_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9810-2

  • Online ISBN: 978-3-0348-8876-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics