Skip to main content

Role of Gangliosides in Transmembrane Signaling and Cell Recognition

  • Chapter
Biology of the Sialic Acids

Abstract

Sialic acid-containing glycosphingolipids (GSLs), collectively called “gan-gliosides,” were discovered in the mid-1930s by Ernst Klenk (Cologne, Germany) (Klenk, 1942) and Gunnar Blix (Uppsala, Sweden), (Blix, 1936) (see Chapter 1). Since then, steadily increasing numbers of scientists have worked on isolation and characterization of gangliosides, determination of different molecular species, and their distribution in animal cells and tissues. Development of new separation technology (e.g., thin-layer and gas chromatography) and instrumental analysis (e.g., mass spectrometry, NMR spectroscopy), together with introduction of the monoclonal antibody (mAb) approach in immunochemistry, allowed identification of many previously unknown ganglioside species (especially those having complex lacto- or globo-series backbone structure) in the 1970s and 1980s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berg, E. L., Robinson, M. K., Mansson, O., Butcher, E. C., and Magnani, J. L., 1991, A carbohydrate domain common to both sialyl Lea and sialyl Lea is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1, J. Biol. Chem. 266: 14869–14872.

    PubMed  CAS  Google Scholar 

  • Blix, G., 1936, Über die Kohlenhydratgruppen des Submaxillarismucins, Hoppe-Seyler’s Z. Physiol. Chem. 240: 43–54.

    Article  CAS  Google Scholar 

  • Bradshaw, R. A., and Prentis, S., 1987, Oncogenes and Growth Factors, Elsevier, Amsterdam. Bremer, E. G., and Hakomori, S., 1982, GM3 ganglioside induces hamster fibroblast growth inhibition in chemically-defined medium: Ganglioside may regulate growth factor receptor function, Biochem. Biophys. Res. Commun. 106: 711–718.

    Google Scholar 

  • Bremer, E. G., and Hakomori, S., 1984, Gangliosides as receptor modulators, Adv. Exp. Med. Biol. 174: 381–394.

    Article  PubMed  CAS  Google Scholar 

  • Bremer, E. G., Hakomori, S., Bowen-Pope, D. F., Raines, E., and Ross, R., 1984, Gangliosidemediated modulation of cell growth, growth factor binding, and receptor phosphorylation, J. Biol. Chem. 259: 6818–6825.

    PubMed  CAS  Google Scholar 

  • Bremer, E. G., Schlessinger, J., and Hakomori, S., 1986, Ganglioside-mediated modulation of cell growth: Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor, J. Biol. Chem. 261: 2434–2440.

    PubMed  CAS  Google Scholar 

  • Brugge, J. S., 1993, New intracellular targets for therapeutic drug design, Science 260: 918–919.

    Article  PubMed  CAS  Google Scholar 

  • Cheresh, D. A., Pytela, R., Pierschbacher, M. D., Klier, F. G., Ruoslahti, E., and Reisfeld, R. A., 1987, An Arg-Gly-Asp-directed receptor on the surface of human melanoma cells exists in a divalent cation-dependent functional complex with the disialoganglioside GD2, J. Cell Biol. 105: 1163–1173.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S., Carpenter, G., and King, L., 1980, Epidermal growth factor receptor—protein kinase interactions: Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity, J. Biol. Chem. 255: 4834–4842.

    PubMed  CAS  Google Scholar 

  • Czech, M. P., 1985, The nature and regulation of the insulin receptor: Structure and function, Annu. Rev. Physiol. 47: 357–381.

    Article  PubMed  CAS  Google Scholar 

  • Hakomori, S., 1984, Glycosphingolipids as differentiation-dependent, tumor-associated markers and as regulators of cell proliferation, Trends Biochem. Sci. 9: 453–455.

    Article  CAS  Google Scholar 

  • Hakomori, S., 1987, Ganglioside-mediated modulation of growth factor receptor function and cell adhesion, in: Gangliosides and Modulation of Neuronal Functions, ( H. Rahmann, eds.), Springer-Verlag, Berlin, pp. 465–479.

    Chapter  Google Scholar 

  • Hakomori, S., 1990, Bifunctional role of glycosphingolipids: Modulators for transmembrane signaling and mediators for cellular interactions, J. Biol. Chem. 265: 18713–18716.

    PubMed  CAS  Google Scholar 

  • Hakomori, S., 1993, Structure and function of sphingoglycolipids in transmembrane signalling and cell—cell interactions, Biochem. Soc. Trans. 21: 583–595.

    PubMed  CAS  Google Scholar 

  • Hakomori, S., and Igarashi, Y., 1993, Gangliosides and glycosphingolipids as modulators of cell growth, adhesion, and transmembrane signaling, Adv. Lipid Res. 25: 147–162.

    PubMed  CAS  Google Scholar 

  • Hakomori, S., Igarashi, Y., Nojiri, H., Bremer, E. G., Hanai, N., and Nores, G. A., 1990, Bioactive gangliosides modulating transmembrane signaling, in: Trophic Factors and the Nervous System, ( L. A. Horrocks, N. H. Neff, A. J. Yates, and M. Hadjiconstantinou, eds.), Raven Press, New York, pp. 135–158.

    Google Scholar 

  • Hanai, N., Dohi, T., Nores, G. A., and Hakomori, S., 1988a, A novel ganglioside, de-N-acetylGM3 (II3NeuNH2LacCer), acting as a strong promoter for epidermal growth factor receptor kinase and as a stimulator for cell growth, J. Biol. Chem. 263: 6296–6301.

    PubMed  CAS  Google Scholar 

  • Hanai, N., Nores, G. A., MacLeod, C., Torres-Mendez, C.-R., and Hakomori, S., 1988b, Gangliosidemediated modulation of cell growth: Specific effects of GM3 and lyso-GM3 in tyrosine phosphorylation of the epidermal growth factor receptor, J. Biol. Chem. 263: 10915–10921.

    PubMed  CAS  Google Scholar 

  • Handa, K., Nudelman, E. D., Stroud, M. R., Shiozawa, T., and Hakomori, S., 1991, Selectin GMP-140 (CD62; PADGEM) binds to sialosyl-Lea and sialosyl-Lex, and sulfated glycans modulate this binding, Biochem. Biophys. Res. Commun. 181: 1223–1230.

    Article  PubMed  CAS  Google Scholar 

  • Heldin, C.-H., Ek, B., and Ronnstrand, L., 1983, Characterization of the receptor for platelet-derived growth factor on human fibroblasts: Demonstration of an intimate relationship with a 185,000-dalton substrate for the plate-derived growth factor-stimulated kinase, J. Biol. Chem. 258: 10054–10061.

    PubMed  CAS  Google Scholar 

  • Igarashi, Y., Nojiri, H., Hanai, N., and Hakomori, S., 1989, Gangliosides that modulate membrane protein function, Methods Enzymol. 179: 521–541.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi, Y., Kitamura, K., Zhou, Q., and Hakomori, S., 1990, A role of lyso-phosphatidylcholine in GM3-dependent inhibition of epidermal growth factor receptor autophosphorylation in A431 plasma membranes, Biochem. Biophys. Res. Commun. 172: 77–84.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, S., Kull, F. C., Jr., Earp, H. S., Svoboda, M. E., Van Wyk, J. J., and Cuatrecasas, P., 1983, Somatomedin-C stimulates the phosphorylation of the beta-subunit of its own receptor, J. Biol. Chem. 258: 9581–9584.

    PubMed  CAS  Google Scholar 

  • Kasuga, M., Hedo, J. A., Yamada, K. M., and Kahn, C. R., 1982a, The structure of insulin receptor and its subunits: Evidence for multiple non-reduced forms and a 210,000 possible proreceptor, J. Biol. Chem. 257: 10392–10399.

    PubMed  CAS  Google Scholar 

  • Kasuga, M., Karlsson, F. A., and Kahn, C. R., 1982b, Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor, Science 215: 185–187.

    Article  PubMed  CAS  Google Scholar 

  • Kasuga, M., Zick, Y., Blithe, D. L., Crettaz, M., and Kahn, C. R., 1982e, Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system, Nature 298: 667–669.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, H. K., Martin, G. R., and Fishman, P. H., 1979, Ganglioside inhibition of fibronectinmediated cell adhesion to collagen, Proc. Natl. Acad. Sci. USA 76: 3367–3371.

    Article  PubMed  CAS  Google Scholar 

  • Klenk, E., 1942, Über die Ganglioside, eine neue Gruppe von zuckerhaltigen Gehirnlipoiden, Hoppe-Seyler’s Z. Physiol. Chem. 273: 76–86.

    Article  CAS  Google Scholar 

  • Kojima, N., and Hakomori, S., 1989, Specific interaction between gangliotriaosylceramide (Gg3) and sialosyllactosylceramide (GM3) as a basis for specific cellular recognition between lymphoma and melanoma cells, J. Biol. Chem. 264: 20159–20162.

    PubMed  CAS  Google Scholar 

  • Kojima, N., and Hakomori, S., 1991, Cell adhesion, spreading, and motility of G3-expressing cells based on glycolipid—glycolipid interaction, J. Biol. Chem. 266: 17552–17558.

    PubMed  CAS  Google Scholar 

  • Kojima, N., Handa, K., Newman, W., and Hakomori, S., 1992a, Multi-recognition capability of E-selectin in a dynamic flow system, as evidenced by differential effects of sialidases and anti-carbohydrate antibodies on selectin-mediated cell adhesion at low vs. high wall shear stress: A preliminary note, Biochem. Biophys. Res. Commun. 189: 1686–1694.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, N., Handa, K., Newman, W., and Hakomori, S., 1992b, Inhibition of selectin-dependent tumor cell adhesion to endothelial cells and platelets by blocking O-glycosylation of these cells, Biochem. Biophys. Res. Commun. 182: 1288–1295.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, N., Shiota, M., Sadahira, Y., Handa, K., and Hakomori, S., 1992c, Cell adhesion in a dynamic flow system as compared to static system: Glycosphingolipid—glycosphingolipid interaction in the dynamic system predominates over lectin-or integrin-based mechanisms in adhesion of B16 melanoma cells to non-activated endothelial cells, J. Biol. Chem. 267: 17264–17270.

    PubMed  CAS  Google Scholar 

  • Lawrence, M. B., and Springer, T. A., 1991, Leukocytes roll on a selectin at physiologic flow rates: Distinction from and prerequisite for adhesion through integrins, Cell 65: 859–873.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, M. B., Smith, C. W., Eskin, S. G., and McIntire, L. V., 1990, Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium, Blood 75: 227–237.

    PubMed  CAS  Google Scholar 

  • Lingwood, C., and Hakomori, S., 1977, Selective inhibition of cell growth and associated changes in glycolipid metabolism induced by monovalent antibodies to glycolipids, Exp. Cell Res. 108: 385–391.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, J. B., Stoolman, L. M., Nair, R. P., Larsen, R. D., Berhend, T. L., and Marks, R. M., 1990, ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA, Cell 63: 475–484.

    Article  PubMed  CAS  Google Scholar 

  • Mulligan, M. S., Lowe, J. B., Larsen, R. D., Paulson, J. C., Zheng, Z.-L., DeFrees, S., Maemura, K., Fukuda, M., and Ward, P. A., 1993a, Protective effects of sialylated oligosaccharides in immune complex-induced acute lung injury, J. Exp. Med. 178: 623–631.

    Article  PubMed  CAS  Google Scholar 

  • Mulligan, M. S., Paulson, J. C., DeFrees, S., Zheng, Z.-L., Lowe, J. B., and Ward, P. A., 1993b, Protective effects of oligosaccharides in P-selectin-dependent lung injury, Nature 364: 149–151.

    Article  PubMed  CAS  Google Scholar 

  • Nojiri, H., Stroud, M. R., and Hakomori, S., 1991, A specific type of ganglioside as a modulator of insulin-dependent cell growth and insulin receptor tyrosine kinase activity: Possible association of ganglioside-induced inhibition of insulin receptor function and monocytic differentiation induction in HL60 cells, J. Biol. Chem. 266: 4531–4537.

    PubMed  CAS  Google Scholar 

  • Okada, Y., Mugnai, G., Bremer, E. G., and Hakomori, S., 1984, Glycosphingolipids in detergent-insoluble substrate attachment matrix (DISAM) prepared from substrate attachment material (SAM): Their possible role in regulating cell adhesion, Exp. Cell Res. 155: 448–456.

    Article  PubMed  CAS  Google Scholar 

  • Paulson, J. C., 1992, Selectin/carbohydrate-mediated adhesion of leukocytes, in: Adhesion: Its Role in Inflammatory Disease, ( J. M. Harlan and D. Y. Liu, eds.), Freeman, San Francisco, pp. 1942.

    Google Scholar 

  • Phillips, M. L., Nudelman, E. D., Gaeta, F.C.A., Perez, M., Singhal, A. K., Hakomori, S., and Paulson, J. C., 1990, ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Le“, Science 250: 1130–1132.

    Article  PubMed  CAS  Google Scholar 

  • Polley, M. J., Phillips, M. L., Wayner, E. A., Nudelman, E. D., Singhal, A. K., Hakomori, S., and Paulson, J. C., 1991, CD62 and endothelial cell—leukocyte adhesion molecule I (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x, Proc. Natl. Acad. Sci. USA 88: 6224–6228.

    Article  PubMed  CAS  Google Scholar 

  • Rauvala, H., Carter, W. G., and Hakomori, S., 1981, Studies on cell adhesion and recognition: I. Extent and specificity of cell adhesion triggered by carbohydrate-reactive proteins (glycosidases and lectins) and by fibronectin, J. Cell Biol. 88: 127–137.

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger, J., 1988, Signal transduction by allosteric receptor oligomerization, Trends Biochem. Sci. 13: 443–447.

    Article  PubMed  CAS  Google Scholar 

  • Song, W., Vacca, M. F., Welti, R., and Rintoul, D. A., 1991, Effects of gangliosides GM3 and de-Nacetyl GM3 on epidermal growth factor receptor kinase activity and cell growth, J. Biol. Chem. 266: 10174–10181.

    PubMed  CAS  Google Scholar 

  • Takada, A., Ohmori, K., Takahashi, N., Tsuyuoka, K., Yago, A., Zenita, K., Hasegawa, A., and Kannagi, R., 1991, Adhesion of human cancer cells to vascular endothelium mediated by a carbohydrate antigen, sialyl Lewis A, Biochem. Biophys. Res. Commun. 179: 713–719.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich, A., and Schlessinger, J., 1990, Signal transduction by receptors with tyrosine kinase activity, Cell 61: 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Ushiro, H., and Cohen, S., 1980, Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A43I cell membranes, J. Biol. Chem. 255: 8363–8365.

    PubMed  CAS  Google Scholar 

  • Weis, F.M.B., and Davis, R. J., 1990, Regulation of epidermal growth factor receptor signal transduction: Role of gangliosides, J. Biol. Chem. 265: 12059–12066.

    PubMed  CAS  Google Scholar 

  • Yates, A. J., VanBrocklyn, J., Saqr, H. E., Guan, Z., Stokes, B. T., and O’Dorisio, M. S., 1993, Mechanisms through which gangliosides inhibit PDGF-stimulated mitogenesis in intact Swiss 3T3 cells: Receptor tyrosine phosphorylation, intracellular calcium, and receptor binding, Exp. Cell Res. 204: 38–45.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, M., Tsuruoka, T., Tsuji, T., and Hakomori, S., 1992, Regulatory role of GM3 ganglioside in integrin function, as evidenced by its effect on function of a513 1-liposomes: A preliminary note, Biochem. Biophys. Res. Commun. 186: 1397–1402.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, M., Fang, H., Tsuruoka, T., Tsuji, T., Sasaki, T., and Hakomori, S., 1993, Regulatory role of GM3 ganglioside in 05131 integrin receptor for fibronectin-mediated adhesion of FUA169 cells, J. Biol. Chem. 268: 2217–2222.

    PubMed  CAS  Google Scholar 

  • Zhou, Q., Hakomori, S., Kitamura, K., and Igarashi, Y., 1994, GM3 directly inhibits tyrosine phosphorylation and de-N-acetyl-GM3 directly enhances serine phosphorylation of epidermal growth factor receptor, independently of receptor—receptor interaction, J. Biol. Chem. 269: 1959–1965.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hakomori, Si. (1995). Role of Gangliosides in Transmembrane Signaling and Cell Recognition. In: Rosenberg, A. (eds) Biology of the Sialic Acids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9504-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9504-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9506-6

  • Online ISBN: 978-1-4757-9504-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics