Skip to main content

Part of the book series: MCBU Molecular and Cell Biology Updates ((MCBU))

  • 151 Accesses

Abstract

Proteasomes are large (700 kDa) multisubunit proteinase complexes which form the catalytic core of 26S proteasomes (approx. 2,000 kDa) and which constitute the major non-lysosomal protein degradation machinery in eukaryotic cells [1]. Related proteinases with similar structures have been purified from some archaebacteria [2] and are also found in eubacteria [3]. 20S proteasomes have a hollow cylindrical structure with catalytic sites located inside the central cavity. They have a novel catalytic mechanism and require protein substrates to be readily unfolded for degradation to small peptides inside the cylindrical structure. Eukaryotic 20S proteasomes are complex particles composed of 14–17 different subunits of 22–34 kDa. They are found in the nucleus and in the cytoplasm and can account for up to 1% of the soluble cellular protein. Regulatory complexes bind to the ends of the cylinder giving rise to 26S proteasomes and other regulated complexes. The 26S proteasome is responsible for the recognition and degradation of proteins involved in cell cycle regulation, transcriptional regulation and signal transduction, in many cases by ubiquitin-dependent mechanisms. Proteasomes also play an important role in the processing of antigens for presentation of peptides by the major histo-compatibility complex (MHC) class I pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 65: 801–847

    Article  PubMed  CAS  Google Scholar 

  2. Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science. 268: 533–539

    Article  PubMed  Google Scholar 

  3. Tamura T, Nagy I, Lupas A, Lottspeich F, Cejka Z, Schoofs G, Tanaka K, Mot RD, Baumeister W (1995) The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus sp. strain NI86/21. Curr Biol. 5: 766–774

    Article  PubMed  CAS  Google Scholar 

  4. Hilt W, Heinemeyer W, Wolf DH (1993) Studies on the yeast proteasome uncover its basic structural features and multiple in vivo functions. Enzyme Protein. 47: 189–201

    PubMed  CAS  Google Scholar 

  5. York IA, Rock KL (1996) Antigen processing and presentation by the class I major histocompatibility complex. Annu Rev Immunol. 14: 369–397

    Article  PubMed  CAS  Google Scholar 

  6. Tanaka K, Tanahashi N, Tsurumi C, Shimbara N (1997) Proteasomes and antigen processing. Adv Immunol. 64: 1–38

    Article  PubMed  CAS  Google Scholar 

  7. Peters JM (1994) Proteasomes: protein degradation machines of the cell. Trends Biochem Sci. 19: 377–382

    Article  PubMed  CAS  Google Scholar 

  8. Djaballah H, Rowe AJ, Harding SE, Rivett AJ (1993) The multicatalytic proteinase complex (proteasome): structure and conformational changes associated with changes in proteolytic activity. Biochem J. 292: 857–862

    PubMed  CAS  Google Scholar 

  9. Weissman JS, Sigler PB, Horwich AL (1995) From the cradle to the grave: ring complexes in the life of a protein. Protein Sci. 268: 523–524

    CAS  Google Scholar 

  10. Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature. 386: 463–471

    Article  PubMed  CAS  Google Scholar 

  11. Rivett AJ (1989) The multicatalytic proteinase of mammalian cells. Arch Biochem Biophys. 268: 1–8

    Article  PubMed  CAS  Google Scholar 

  12. Orlowski M (1990) The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry. 29: 10289–10297

    Article  PubMed  CAS  Google Scholar 

  13. Rivett AJ, Savory PJ, Djaballah H (1994) Multicatalytic endopeptidase complex (proteasome). Meth Enzymol. 244: 331–350

    Article  PubMed  CAS  Google Scholar 

  14. Orlowski M, Cardozo C, Michaud C (1993) Evidence for the presence of five distinct proteolyic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the car-boxyl side of branched chain and small neutral amino acids. Biochemistry. 32: 1563–1572

    Article  PubMed  CAS  Google Scholar 

  15. Cardozo C, Chen WE, Wilk S (1996) Cleavage of Pro-X and Glu-X bonds catalyzed by the branched chain amino acid preferring activity of the bovine pituitary multicatalytic proteinase complex (20S proteasome). Arch Biochem Biophys. 334: 113–120

    Article  PubMed  CAS  Google Scholar 

  16. Elutieri AM, Kohanski RA, Cardozo C, Orlowski M (1997) Bovine spleen multicatalytic proteinase complex (proteasome). Replacement of X,Y and Z subunits by LMP1, LMP2 and MECL1 and changes in properties and specificity. J Biol Chem. 272: 11824–11831

    Article  Google Scholar 

  17. Reidlinger J, Pike AM, Savory PJ, Murray RZ, Rivett AJ (1997) Catalytic properties of 26S and 20S proteasomes and radiolabelling of MB 1, LMP7 and C7 subunits associated with trypsin-like and chymotrypsin-like activities. J Biol Chem. 272: 24899–24905

    Article  PubMed  CAS  Google Scholar 

  18. Rock KL, Gram C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 78: 761–771

    Article  PubMed  CAS  Google Scholar 

  19. Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995) Inhibition of proteasome activities and subunit-specific amino-acid terminal threonine modification by lactacystin. Science. 268: 726–731

    Article  PubMed  CAS  Google Scholar 

  20. Figueiredo-Pereira ME, Chen WE, Li J, Johdo O (1996) The antitumor drug aclacinomycin A, which inhibits the degradation of ubiquitinated proteins, shows selectivity for the chymotrypsin-like activity of the bovine pituitary 20 S proteasome. J Biol Chem. 271: 16455–16459

    Article  PubMed  CAS  Google Scholar 

  21. Bogyo M, McMaster JS, Gaczynska M, Tortorella D, Goldberg AL, Ploegh H (1997) Covalent modification of the active site threonine of proteasomal β subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc Natl Acad Sci USA. 94: 6629–6634

    Article  PubMed  CAS  Google Scholar 

  22. Seemüller E, Lupas A, Stock D, Löwe J, Huber R, Baumeister W (1995) Proteasome from Thermoplasma acidophilum: a threonine protease. Science. 268: 579–582

    Article  PubMed  Google Scholar 

  23. Kessel M, Wu WF, Gottesman S, Kocsis E, Steven AC, Maurizi MR (1996) Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP-dependent activator, ClpY. FEBS Lett. 398: 274–278

    Article  PubMed  CAS  Google Scholar 

  24. Brannigan JA, Dodson G, Duggleby HJ, Moody PCE, Smith JL, Tomchick DR, Murzin AG (1995) A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature. 378: 416–419

    Article  PubMed  CAS  Google Scholar 

  25. Seemüller E, Lupas A, Baumeister W (1996) Autocatalytic processing of the 20S proteasome. Nature. 382: 468–470

    Article  PubMed  Google Scholar 

  26. Heinemeyer W, Fischer M, Krimmer T, Stachou U, Wolf DH (1997) The active sites of the eukaryotic 20S proteasome and their involvement in subunit precursor processing. J Biol Chem. 272: 25200–25209

    Article  PubMed  CAS  Google Scholar 

  27. Zwickl P, Kleinz J, Baumeister W (1994) Critical elements in proteasome assembly. Nat Struct Biol. 1: 765–770

    Article  PubMed  CAS  Google Scholar 

  28. Chen P, Hochstrasser M (1996) Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell. 86: 961–972

    Article  PubMed  CAS  Google Scholar 

  29. Schmidtke G, Schmidt M, Kloetzel PM (1997) Maturation of mammalian 20S proteasome: purification and characterization of 13S and 16S proteasome precursor complexes. J Mol Biol. 268: 95–106

    Article  PubMed  CAS  Google Scholar 

  30. Thomson S, Rivett AJ (1996) Processing of a mammalian proteasome beta-type subunit, N3. Biochem J. 315: 733–738

    PubMed  CAS  Google Scholar 

  31. Cuervo AM, Palmer A, Rivett AJ, Knecht E (1995) Degradation of proteasomes by lysosomes in rat liver. Eur J Biochem. 227: 792–800

    Article  PubMed  CAS  Google Scholar 

  32. Hoffman L, Rechsteiner M (1996) Nucleotidase activities of the 26S proteasome and its regulatory complex. J Biol Chem. 271: 32538–32545

    Article  PubMed  CAS  Google Scholar 

  33. Tanaka K, Tsurumi C (1997) The 26S proteasome: subunits and functions. Mol Biol Rep. 24: 3–11

    Article  PubMed  CAS  Google Scholar 

  34. Kominami K-I, Okura N, Kawamura M, DeMartino GN, Slaughter CA, Shimbara N, Chung CH, Fujimuro M, Yokosawa H, Shimizu Y et al. (1997) Yeast counterparts of subunits S5a and p58 (S3) of the human 26S proteasome are encoded by two multicopy suppressors of ninl-1. Mol Biol Cell. 8: 171–187

    PubMed  CAS  Google Scholar 

  35. Lam YA, Xu W, DeMartino GN, Cohen RE (1997) Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature. 385: 737–740

    Article  PubMed  CAS  Google Scholar 

  36. DeMartino GN, Proske RJ, Moomaw CR, Strong AA, Song X, Hisamatsu H, Tanaka K, Slaughter CA (1996) Identification, purification, and characterization of a PA700-dependent activator of the proteasome. J Biol Chem. 271: 3112–3118

    Article  PubMed  CAS  Google Scholar 

  37. Fraser RA, Rossignol M, Heard DJ, Egly J-M, Chambon P (1997) SUG1, a putative transcriptional mediator and subunit of the PA700 proteasome regulatory complex, is a DNA helicase. J Biol Chem. 272: 7122–7126

    Article  PubMed  CAS  Google Scholar 

  38. Realini C, Jensen CC, Zhang Z-G, Johnston SC, Knowlton JR, Hill CP, Rechsteiner M (1997) Characterization of recombinant REGα, REGβ, and REGγ proteasome activators. J Biol Chem. 272: 25483–25492

    Article  PubMed  CAS  Google Scholar 

  39. Ahn K, Tanahashi N, Akiyama K, Hismatsu H, Noda C, Tanaka K, Chung C, Shimbara N, Willy P, Mott J, Slaughter C, DeMartino G (1995) Primary structures of two homologous subunits of PA28, a gamma-inter-feron-inducible protein activator of the 20S proteasome. FEBS Lett. 366: 37–42

    Article  PubMed  CAS  Google Scholar 

  40. Rivett AJ, Knecht E (1993) Proteasome location. Curr Biol. 3: 127–129

    Article  PubMed  CAS  Google Scholar 

  41. Rivett AJ, Palmer A, Knecht E (1992) Electron microscopic localization of the multicatalytic proteinase in rat liver and in cultured cells. J Histochem Cytochem. 40: 1165–1172

    Article  PubMed  CAS  Google Scholar 

  42. Palmer A, Rivett AJ, Thomson S, Hendil KB, Butcher GW, Fuertes G, Knecht E (1996) Subpopulations of proteasomes in rat liver nuclei, microsomes and cytosol. Biochem J. 316: 401–407

    PubMed  CAS  Google Scholar 

  43. Peters JM, Franke WW, Kleinschmidt JA (1994) Distinct 19S and 20S subcomplexes of the 26S proteasome and their distribution in the nucleus and cytoplasm. J Biol Chem. 269: 7709–7718

    PubMed  CAS  Google Scholar 

  44. Amsterdam AF, Pitzer W, Baumeister W (1993) Changes in intracellular localization of proteasomes in immortalized ovarian granulosa cells during mitosis is associated with a role in cell cycle control. Proc Natl Acad Sci USA. 90: 99–103

    Article  PubMed  CAS  Google Scholar 

  45. Palmer A, Mason GGF, Paramio J, Knecht E, Rivett AJ (1994) Changes in proteasome localization during the cell cycle. Eur J Cell Biol. 64: 163–175

    PubMed  CAS  Google Scholar 

  46. Benedict CM, Clawson GA (1996) Nuclear multicatalytic proteinase subunit RRC3 is important for growth regulation in hepatocytes. Biochemistry. 35: 11612–11621

    Article  PubMed  CAS  Google Scholar 

  47. Mason GGF, Hendil KB, Rivett AJ (1996) Phosphorylation of proteasomes in animal cells: identification of phosphorylated subunits and effect of phosphorylation on proteolytic activity. Eur J Biochem. 238: 453–462

    Article  PubMed  CAS  Google Scholar 

  48. Nederlof PM, Wang H-R, Baumeister W (1995) Nuclear localization signals of human and Thermoplasma proteasomal a subunits are functional in vitro. Proc Natl Acad Sci USA. 92: 12060–12064

    Article  PubMed  CAS  Google Scholar 

  49. Ghislain M, Udvardy A, Mann C (1993) S. cerevisiae 26S protease mutants arrest cell division in G2/metaphase. Nature. 366: 358–362

    Article  PubMed  CAS  Google Scholar 

  50. Gordon C, McGurk G, Dillon P, Rosen C, Hastie ND (1993) Defective mitosis due to a mutation in the gene for a fission yeast 26S protease subunit. Nature. 366: 3655–3657

    Article  Google Scholar 

  51. Ciechanover A (1994) The ubiquitin-proteasome proteolytic pathway. Cell. 79: 13–21

    Article  PubMed  CAS  Google Scholar 

  52. Hochstrasser M (1997) Ubiquitin-dependent protein degradation. Annu Rev Genet. 30: 405–439

    Article  Google Scholar 

  53. Krappmamm D, Wulczyn FG, Scheidereit C (1996) Different mechanisms control signal-induced degradation and basal turnover of the NF-kB inhibitor IkBα in vivo. EMBO J. 15: 6716–6726

    Google Scholar 

  54. Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A (1992) Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature. 360: 597–599

    Article  PubMed  CAS  Google Scholar 

  55. Früh K, Gossen M, Wang K, Bujard H, Peterson PA, Yang Y (1994) Displacement of housekeeping proteasome subunits by MHC-encoded LMPs: a newly discovered mechanism for modulating the multicatalytic proteinase complex. EMBO J. 13: 3236–3244

    PubMed  Google Scholar 

  56. Belich MP, Glynne RJ, Senger G, Sheer D, Trowsdale J (1994) Proteasome components with reciprocal expression to that of the MHC-encoded LMP proteins. Curr Biol. 4: 769–776

    Article  PubMed  CAS  Google Scholar 

  57. Van Kaer L, Ashton-Richardt PG, Eichelberger M, Gaczynska M, Nagashima K, Rock KL, Goldberg AL, Doherty PC, Tonegawa S (1994) Altered peptidase and viral-specific T cell response in LMP2 mutant mice. Immunity. 1: 533–541

    Article  PubMed  Google Scholar 

  58. Sibille C, Gould K, Willard-Gallo K, Thomson S, Rivett AJ, Powis S, Butcher GW, DeBaetselier P (1995) LMP2 proteasome subunit required for efficient class I antigen-processing in a T-cell lymphoma. Curr Biol. 5: 923–930

    Article  PubMed  CAS  Google Scholar 

  59. Fehling HJ, Swat W, Laplace C, Kuhn R, Rajewsky K, Müller U, von Boehmer H (1994) MHC class I expression in mice lacking the proteasome subunit LMP-7. Science. 265: 1234–1237

    Article  PubMed  CAS  Google Scholar 

  60. Groettrup M, Soza A, Eggers M, Kuehn L, Dick TP, Schild H, Rammensee HG, Kosinowski UH, Kloetzel PM (1996) Role for the proteasome regulator PA28alpha in antigen presentation. Nature. 381: 166–168

    Article  PubMed  CAS  Google Scholar 

  61. Seeger M, Ferrell K, Rainer F, Dubiel W (1997) HIV-1 Tat inhibits the 20S proteasome and its 11S regulator-mediated activation. J Biol Chem. 272: 8145–8148

    Article  PubMed  CAS  Google Scholar 

  62. Brodsky JL, McCracken AA (1997) ER-associated and proteasome-mediated protein degradation: how two topologically restricted events came together. Trends Cell Biol. 7: 151–156

    Article  PubMed  CAS  Google Scholar 

  63. Biederer T, Volkswein C, Sommer T (1996) Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway. EMBO J. 15: 2069–2076

    PubMed  CAS  Google Scholar 

  64. Hampton RY, Gardner RG, Rine J (1996) Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglytaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell. 7: 2029–2044

    PubMed  CAS  Google Scholar 

  65. Ward C, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell. 83: 121–127

    Article  PubMed  CAS  Google Scholar 

  66. Wiertz EJHJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapoport TA, Ploegh HL (1996) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature. 384: 432–438

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Rivett, A.J., Mason, G.G.F. (1999). Proteasomes. In: Turk, V. (eds) Proteases New Perspectives. MCBU Molecular and Cell Biology Updates. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8737-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8737-3_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9750-1

  • Online ISBN: 978-3-0348-8737-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics