Skip to main content

Geologie Setting, Field Survey and Modeling of the Chimbote, Northern Peru, Tsunami of 21 February 1996

  • Chapter
Seismogenic and Tsunamigenic Processes in Shallow Subduction Zones

Abstract

Whereas the coast of Peru south of 10°S is historically accustomed to tsunamigenic earthquakes, the subduction zone north of 10°S has been relatively quiet. On 21 February 1996 at 21:51 GMT (07:51 local time) a large, tsunamigenic earthquake (Harvard estimate M w =7.5) struck at 9.6°S, 79.6°W, approximately 130 km off the northern coast of Peru, north of the intersection of the Mendana fracture zone with the Peru-Chile trench. The likely mechanism inferred from seismic data is a low-angle thrust consistent with subduction of the Nazca Plate beneath the South American plate, with relatively slow rupture characteristics. Approximately one hour after the main shock, a damaging tsunami reached the Peruvian coast, resulting in twelve deaths. We report survey measurements, from 7.7°S to 11°S, on maximum runup (2–5 m, between 8 and 10°S), maximum inundation distances, which exceeded 500 m, and tsunami sediment deposition patterns. Observations and numerical simulations show that the hydrodynamic characteristics of this event resemble those of the 1992 Nicaragua tsunami. Differences in climate, vegetation and population make these two tsunamis seem more different than they were. This 1996 Chimbote event was the first large (M W>7) subduction-zone (interplate) earthquake between about 8 and 10°S, in Peru, since the 17th century, and bears resemblance to the 1960 (M w 7.6) event at 6.8°S. Together these two events are apparently the only large subduction-zone earthquakes in northern Peru since 1619 (est. latitude 8°S, est. M w 7.8); these two tsunamis also each produced more fatalities than any other tsunami in Peru since the 18th century. We concur with Pelayo and Wiens (1990, 1992) that this subduction zone, in northern Peru, resembles others where the subduction zone is only weakly coupled, and convergence is largely aseismic. Subduction-zone earthquakes, when they occur, are slow, commonly shallow, and originate far from shore (near the tip of the wedge). Thus they are weakly felt, and the ensuing tsunamis are unanticipated by local populations. Although perhaps a borderline case, the Chimbote tsunami clearly is another wake-up example of a “tsunami earthquake.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, KA. (1979), Size of Great Earthquakes of 1873-1974 Inferred from Tsunami Data, J. Geophys. Res. 84, 1561–1568.

    Article  Google Scholar 

  • Abe, KA. (1981), Physical Size of Tsunamigenic Earthquakes of the Northwestern Pacific, Phys. Earth Planet. Inter. 27, 194–205.

    Article  Google Scholar 

  • Abe, KA. (1996), Tsunami Magnitude of the 21 February 1996 Peru Event; E-mail communication via the tsunami bulletin board.

    Google Scholar 

  • Abe, KU., Abe, KA., Tsuji, Y., Imamura, F., Katao, H., Iio, Y., Satake, K., Bourgeois, J., Noguera, E., and Estrada, F. (1993), Field Survey of the Nicaragua Earthquake and Tsunami of September 2, 1992, Bull. Earthq. Res. Inst., Univ. of Tokyo 68, 23–70.

    Google Scholar 

  • Atlas del Peru (1989), Chief editor, Carlos Penaherrera del Aguila; published by the Instituto Geografico Nacional.

    Google Scholar 

  • Beck, S. L., and Ruff, L. J. (1989), Great Earthquakes and Subduction along the Peru Trench, Phys. Earth Planet. Interiors 57, 199–224.

    Article  Google Scholar 

  • Chauchat, C., Early hunter gatherers on the Peruvian coast. In Peruvian Prehistory (Keating, R. W., ed.) (Cambridge Univ. Press 1987) pp. 41–66.

    Google Scholar 

  • Carbonel, H. C., and Aguije, CH. (1989), Sobre el peligro de inudacion por maremotos en las costas de Lima y Ancash, Informe tecnico, Inst. Geof. de Peru.

    Google Scholar 

  • Dewey, J. F., and Lamb, S. H. (1992), Active Tectonics of the Andes, Tectonophysics 205, 79–95.

    Article  Google Scholar 

  • De Vries, T. J. (1988), The Geology of Marine Terraces (tablazos) of Northwest Peru, J. South American Earth Sci. 1(2), 121–136.

    Article  Google Scholar 

  • Dorbath, L., Cisternas, A., and Dorbath, C. (1990), Assessment of the Size of Large and Great Historical Earthquakes of Peru, Bull. Seismol. Soc. Am. 80(3), 551–576.

    Google Scholar 

  • Ekström, G, and Salganik, G. (1996), Harvard CMT Solution for 21 Feb. 96 Earthquake off the Coast of Northern Peru (via Internet).

    Google Scholar 

  • Hasegawa, A., and Sacks, I. S. (1981), Subduction of Nazca Plate Beneath Peru as Determined by Seismic Observations, J. Geophys. Res. 86, 4971–4980.

    Article  Google Scholar 

  • Heinrich, P., Schindele, F., and Guibourg, S. (1998), Modeling of the February 1996 Peruvian Tsunami, Geophys. Res. Lett. 25, 2687–2690.

    Article  Google Scholar 

  • Hsu, J. T., Leonard, E. M., and Wehmiller, J. F. (1989), Aminostratigraphy of Peruvian and Chilean Quaternary Marine Terraces,Quat. Sci. Rev. 8, 255–262.

    Article  Google Scholar 

  • Kanamori, H. (1972), Mechanism of Tsunami Earthquakes, Phys. Earth Planet. Inter. 6, 246–259.

    Article  Google Scholar 

  • Kuroiwa, J. (1995), Tsunamis: Population Evacuation and Land Use Planning for Disaster Mitigation, Localities Studied in Peru (1981-1994), U.N. International Decade of Natural Disaster Reduction Publication (original in Spanish; revised by D. Zupka, translated by C. V. Schneider), 46 pp.

    Google Scholar 

  • Langer, C. J., and Spence, W. (1995), The 1974 Peru Earthquake Series, Bull. Seismol. Soc. Am. 85(3), 665–687.

    Google Scholar 

  • Lindo, R., Dorbath, C., Cisternas, A., Dorbath, L., Ocola, L., and Morales, M. (1992), Subduction Geometry in Central Peru from a Microseismicity Survey: First Results, Tectonophysics 205, 23–29.

    Article  Google Scholar 

  • Lockridge, P. A. (1985), Tsunamis in Peru-Chile, World Data Center A for Solid Earth Geophysics Report SE-39, 97 pp.

    Google Scholar 

  • Lomnitz, C. (1970), Major Earthquakes and Tsunamis in Chile during the Period 1535 to 1955, Geolog. Rundsch. 59, 938–960.

    Article  Google Scholar 

  • Machare and Ortlieb (1992), Plio-Quaternary Vertical Motions and the Subduction of the Nazca Ridge, Central Coast of Peru,Tectonophysics 205, 97–108.

    Article  Google Scholar 

  • Newman, A. V., and Okal, E. A. (1996), Source Slowness of the February 21, 1996 Chimbote Earthquake Studied from Teleseismic Energy Estimates, EOS 77(17), S184.

    Google Scholar 

  • Norabuena, E., Snoke, J. A., and James, D. E. (1994), Structure of the Subducting Nazca Plate beneath Peru, J. Geophys. Res. 99, 9215–9226.

    Article  Google Scholar 

  • Norabuena, E., Leffler-Griffe N, L., Mao, A., Dixon, T., Stein, S., Sacks, I. S., Ocola, L., and Ellis, M. (1998), Space Geodetic Observations of the Nazca-South America Convergence across the Central Andes, Science 279, 358–362.

    Article  Google Scholar 

  • Ocala, L. C., Effects of February 21, 1996, Chimbote tsunami. In Modern Preparation and Response for Earthquake, Tsunami and Volcanic Hazards, International Conference 27-30 April, 1998 (Santiago, Chile 1998) 267 pp.

    Google Scholar 

  • Okal, E. A. (1988), Seismic Parameters Controlling Far-field Tsunami Amplitudes: A Review, Natural Hazards 1, 67–96.

    Article  Google Scholar 

  • Pelayo, A. M., and Wiens, D. A. (1990), The November 20, I960 Peru Tsunami Earthquake: Source Mechanism of a Slow Event, Geophys. Res. Lett. 17, 661–664.

    Article  Google Scholar 

  • Pelayo, A. M., and Wiens, D. A. (1992), Tsunami Earthquakes: Slow Thrust-faulting Events in the Accretionary Wedge, J. Geophys. Res. 97,15, 321–15,337.

    Google Scholar 

  • Satake, K., Bourgeois, J., Abe, KU., Abe, KA., Tsuji, Y., Imamura, F., Iio, Y., Katao, H., Noguera, E., and Estrada, F. (1993), Field Survey of the Nicaragua Earthquake and Tsunami of September 2, 1992, EOS, Trans. AGU 74,145 and 156–157.

    Google Scholar 

  • Satake, K., and Imamura, F., eds. (1995), Tsunamis 1992-94, Pure appl. geophys. 144(3/4).

    Google Scholar 

  • Silgado, E. (1978), Historia de los sismos mas notables ocurridos en el Peru (1513-1974), Inst. Geol. Min., Lima, 131 pp.

    Google Scholar 

  • Stoker, J. J., Water Waves (Interscience Publishers, Inc., New York 1957) 567 pp.

    Google Scholar 

  • Swenson, J. L., and Beck, S. L. (1996), Historical 1942 Ecuador and 1942 Peru Subduction Earthquakes, and Earthquake Cycles along Colombia-Ecuador and Peru Subduction Segments, Pure appl. geophys. 146(1), 67–101.

    Article  Google Scholar 

  • Synolakis, C. E., Liu, P., Carrier, G., and Yeh, H. (1997), Tsunamigenic Sea-floor Deformations, Science 278, 598–600.

    Article  Google Scholar 

  • Titov, V. V., and Synolakis, C. E., A numerical study of the 9/1/92 Nicaraguan Tsunami, Proceedings of the IUGG/IOC International Tsunami Symposium, Wakayama, Japan. (Japan Soc. Civil Engineers 1993) pp. 585–598.

    Google Scholar 

  • Titov, V. V., and Synolakis, C. E. (1997),Extreme Inundation Flows during the Hokkaido-Nansei-Oki Tsunami, Geoph. Res. Lett. 24(11), 1315–1318.

    Article  Google Scholar 

  • Titov, V. V., and Synolakis, C. E. (1998), Numerical Modeling of Tidal Wave Runup, J. Waterway, Port, Coastal and Ocean Engineering 124(4), 157–171.

    Article  Google Scholar 

  • Tushingham, A. M., and Peltier, W. R. (1991), Ice-3G: A New Global Model of Late Pleistocene Deglaciation Based Upon Geophysical Prediction of Post-glacial Relative Sea Level Change, J. Geophys. Res. 96, 4497–4523.

    Article  Google Scholar 

  • Wells, L. E. (1990), Hupolocene History of the El Nino Phenomenon as Recorded in Flood Sediments of Northern Coastal Peru, Geology 18, 1134–1137.

    Article  Google Scholar 

  • Wells, L. E. (1996), The Santa Beach Ridge Complex: Sea-level and Progradational History of an Open Gravel Coast in Central Peru, J. Coastal Res. 12(1), 1–17.

    Google Scholar 

  • Wells, L. E., De Vries, T. J., and Quinn, W. H. (1987), Driftwood Deposits of the 1618 A. D. Tsunami, Northern Coastal Peru, Geol. Soc. Am. Abstr. w. Programs, 19(7), 885.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Bourgeois, J. et al. (1999). Geologie Setting, Field Survey and Modeling of the Chimbote, Northern Peru, Tsunami of 21 February 1996. In: Sauber, J., Dmowska, R. (eds) Seismogenic and Tsunamigenic Processes in Shallow Subduction Zones. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8679-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8679-6_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6146-4

  • Online ISBN: 978-3-0348-8679-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics