Skip to main content

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 615 Accesses

Abstract

The propagation of an interfacial crack through a weak plane of a transparent Plexiglas block is studied experimentally. The toughness is controlled artificially by a sand blasting procedure, and fluctuates locally in space like uncorrelated random noise. The block is fractured in mode I at low speed (10’ - 10-4m/s). The crack front is observed optically with a microscope and a high resolution digital camera. During the propagation, the front is pinned by micro-regions of high toughness and becomes rough. Roughness of the crack front is analyzed in terms of self-affinity. The in-plane roughness exponent is shown to be 0.63 ± 0.05. Experimental results are compared to a numerical model. The model reproduces the self-affine behavior of the crack front, i.e., long-range correlations of the roughness. Analogies between mode I and mode III are presented in order to discuss implications of the experimental results for creeping faults. Accordingly, correlations of the slip pattern are shown to exist over scales substantially larger than the asperity sizes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bouchaud, E. (1997)Scaling Properties of CracksJ. Phys.: Cond. Matter94319–4344.

    Article  Google Scholar 

  • Bouchaud, E., Lapasset, G., and Planes, J. (1990)Fractal Dimension of Fractured Surfaces: A Universal Value?Europhys. Lett.1373–79.

    Article  Google Scholar 

  • Bouchaud, J. P., Bouchaud, E., Lapasset, G., and Planes, J. (1993)Models of Fractal CracksPhys. Rev. Lett.712240.

    Article  Google Scholar 

  • Brown, S. R. and Scholz, C. H. (1985)Broad Bandwidth Study of the Topography of Natural Rock SurfacesJ. Geophys. Res.9012,575–12,582.

    Google Scholar 

  • Cox, B. L. and Wang, J. S. Y. (1993)Fractal Surfaces: Measurement and Application in Earth SciencesFractals187–115.

    Article  Google Scholar 

  • Delaplace, A., Schmittbuhl, J., and Maley, K. (1999)High Resolution Description of a Crack Front in an Heterogeneous Plexiglas BlockPhys. Rev. E601337–1343.

    Article  Google Scholar 

  • Fisher, D. (1998)Collective Transport in Random Media: From Superconductors to EarthquakesPhysics Reports301113–150.

    Article  Google Scholar 

  • Gao, H. and Rice, J. (1986)Shear-stress Intensity Factors for a Planar Crack with Slightly Curved FrontJ. Appl. Mech. 53(4), 774–778.

    Article  Google Scholar 

  • Gao, H. and Rice, J. R. (1989)A First-order Perturbation Analysis of Crack Trapping by Arrays of ObstaclesASME J. Appl. Mech.56828–836.

    Article  Google Scholar 

  • Gao, H., Rice, J., and Lee, J. (1991)Penetration of a Quasi-statically Slipping Crack into a Seismogenic Zone of Heterogeneous Fracture-resistanceJ. Geophys. Res. 96(B13), 21,535–21,548.

    Article  Google Scholar 

  • Lopez, J. and Schmittbuhl, J. (1998)Anomalous Scaling of Fracture SurfacesPhys. Rev. E 57, 6999–7005.

    Article  Google Scholar 

  • Maloy, K. and Schmittbuhl, J. (2001)Dynamical Instabilities during Slow Crack PropagationPhys. Rev. Lett. submitted.

    Google Scholar 

  • Maloy, K. J., Hansen, A., Hinrichsen, E. L., and Roux, S. (1992)Experimental Measurements of the Roughness of Brittle CracksPhys. Rev. Lett.68213–215.

    Article  Google Scholar 

  • Perfettini, H., Schmittbuhl, J., and Vilotte, J. (2001)Slip Correlations on a Creeping FaultGeophys. Res. Lett. 28(10), 2133–2136.

    Article  Google Scholar 

  • Perrin, G. and Rice, J. N. (1994)Disordering of Dynamic Planar Crack Front in a Model Elastic Medium of Randomly Variable ToughnessJ. Mech. Phys. Solids42(6)1047–1064.

    Article  Google Scholar 

  • Power, W. L., Tullis, T. E., Brown, S. R., Boitnott, G. N., and Scholz, C. H. (1987)Roughness of Natural Fault SurfacesGeophys. Res. Lett.1429–32.

    Article  Google Scholar 

  • Ramanathan, S. and Fisher, D. (1997)Dynamics and Instabilities of Planar Tensile Cracks in Heterogeneous MediaPhys. Rev. Lett.79877–880.

    Article  Google Scholar 

  • Ramanathan, S. and Fisher, D. (1998)Onset of Propagation of Planar Cracks in Heterogeneous MediaPhys. Rev. B586026–6046.

    Article  Google Scholar 

  • Rice, J. R., Ben-Zion, Y., and Kim, K. (1994)Three-dimensional Perturbation Solution for a Dynamic Planar Crack Moving Unsteadily in a Model Elastic SolidJ. Mech. Phys. Solids42813–843.

    Article  Google Scholar 

  • Schmittbuhl, J. and Maloy, K. (1997)Direct Observation of a Self-affine Crack PropagationPhys. Rev.Lett.783888–3891.

    Article  Google Scholar 

  • Schmittbuhl, J. and Vilotte, J. (1999)Interfacial Crack Front Wandering: Influence of Correlated Quenched NoisePhysica A27042–56.

    Article  Google Scholar 

  • Schmittbuhl, J., Gentier, S., and Roux, S. (1993)Field Measurements of the Roughness of Fault SurfacesGeophys. Res. Lett.20639–641.

    Article  Google Scholar 

  • Schmittbuhl, J., Roux, S., Vilotte, J., and Maloy, K. (1995a)Interfacial Crack Pinning: Effect of Non-local InteractionsPhys. Rev. Lett.741787–1790.

    Article  Google Scholar 

  • Schmittbuhl, J., Schmitt, F., and Scxolz, C. (1995b)Scaling Invariance of Crack SurfacesJ. Geophys. Res.1005953–5973.

    Article  Google Scholar 

  • Schmittbuhl, J., Vilotte, J., and Roux, S. (1995c)Reliability of Self-affine MeasurementsPhys. Rev. E 51, 131–147.

    Article  Google Scholar 

  • Scxolz, C. H.The Mechanics of Earthquakes and Faulting(Cambridge Univ. Press, New York, 1990). SIMONSEN, I., HANSEN, A., and NES, O. M. (1998)Using Wavelet Transforms for Hurst Exponent DeterminationPhys. Rev. E582779.

    Google Scholar 

  • Tanguy, A., Gounelle, M., and Roux, S. (1998)From Individual to Collective Pinning: Effect of Long-range Elastic InteractionsPhys. Rev. E 58(2), 1577–1590.

    Article  Google Scholar 

  • Willis, J. and Movchan, A. (1995)Dynamic Weight functions for a Moving Crack: 1. Mode-I LoadingJ. Mech. Phys. Solids43319–341.

    Article  Google Scholar 

  • Zapperi, S., Herrmann, H., and Roux, S. (2000), Planar Cracks in the Fuse Model, Eur. Phys. J. B 17(1), 131–136.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Schmittbuhl, J., Delaplace, A., Mäl∅y, K.J., Perfettini, H., Vilotte, J.P. (2003). Slow Crack Propagation and Slip Correlations. In: Kümpel, HJ. (eds) Thermo-Hydro-Mechanical Coupling in Fractured Rock. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8083-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8083-1_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-0253-5

  • Online ISBN: 978-3-0348-8083-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics