Skip to main content

Temperature-Compensation in Biological Clocks: Models and Experiments

  • Chapter
Function and Regulation of Cellular Systems

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Abstract

In order to function as physiological clocks, circadian (and certain ultradian) rhythms contain homeostatic mechanisms which compensate for external temperature variations and other environmental influences. In this paper a theory for temperature-compensation and general homeostasis for physiological clocks is presented and compared with experimental findings. Results obtained from different organisms indicate that circadian pacemakers are based on one or several negative feedback loops where protein products of clock genes act as inhibitors of their own transcription. We have simulated the occurrence of temperature-compensation by using a simple reaction-kinetic model (the so-called Goodwin oscillator) which mimicks the negative feedback loop of a circadian pacemaker. The comparison between simulation calculations and experiments ofNeurospora andDrosophila clock mutants shows that both period length and temperature-compensation appear closely connected through the stability/degradation rate of clock proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. N. EdmundsCellular and Molecular Bases of Biological ClocksSpringer-Verlag, New York 1988.

    Google Scholar 

  2. J. C. Dunlap Molecular bases for circadian clocks Cell, 96, (1999), 271–290.

    Article  Google Scholar 

  3. L. Rensing, U. Meyer-Grahle and P. Ruoff Biological timing and the clock metaphor: Oscillatory and hourglass mechanisms, Chronobiol. Int., 18 (2001), 329–369.

    Article  Google Scholar 

  4. D. Moore Honey bee circadian clocks: Behavioral control from individual workers to whole-colony rhythms, J. Insect Physiol., 47 (2001), 843–857.

    Article  Google Scholar 

  5. The Q 10 is defined as the ratio between reaction velocities v at (T +10) and T Kelvin, i.e, Q 10 = v(T + 10)/υ(T). Van’t Hoff’s rule states that most chemical reactions increase by a factor of two or more when the temperature is increased by 10 centrigrades.

    Google Scholar 

  6. M. Dixon, E. C. Webb, C. J. R. Thorne and K. F. Tipton Enzymes Longman, London 1979, pp. 175.

    Google Scholar 

  7. C. S. Pittendrigh and P. C. Caldarola General homeostasis of the frequency of circadian oscillations PNAS, 70 (1973), 2697–2701.

    Article  Google Scholar 

  8. P. Ruoff, Ed. Special Issue on, Temperature Compensation of Circadian and Ultradian Rhythms, Chronobiol. Int., 14 (1997), 445–536.

    Google Scholar 

  9. J. J. Loros and J. C. Dunlap Genetic and molecular analysis of circadian rhythms in Neurospora, Annu. Rev. Physiol., 63 (2001), 757–794.

    Article  Google Scholar 

  10. R. M. Noyes Kinetics and Mechanisms of Complex Reactions, in: C. F. Bernasconi, Ed., Investigations of Rates and Mechanisms of Reactions, Vol. 6, Part 1 (John Wiley & Sons, Inc., New York) (1986), 373–423.

    Google Scholar 

  11. R. M. Noyes Mechanisms of some chemical oscillators, J. Phys. Chem., 94 (1990), 4404–4412.

    Article  Google Scholar 

  12. See for example: K. Radhakrishnan and A. C. Hindmarsh Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations, Lawrence Livermore National Laboratory Report UCRL-ID-113855 and NASA Reference Publication 1327, NASA, Lewis Research Center, 21000 Brookpark Rd., Cleveland,OH 44135–3191, 1993. LSODE and other software tools can freely be downloaded at the LLNL website:http://www.llnl.gov/CASC/download/download_home.html

  13. B. D. Aronson, K. A. Johnson, J. J. Loros and J. C. Dunlap Negative Feedback Defining a Circadian Clock: Autoregulation of the Clock Gene frequency, Science, 263 (1994), 1578–1584.

    Article  Google Scholar 

  14. J. W. Hastings and B. M. Sweeney On the mechanism of temperature independence in a biological clock, PNAS, 43 (1957), 804–811.

    Article  Google Scholar 

  15. H. Franke, Lexikon der Physik, Franckh’sche Verlangshandlung, Stuttgart 1969, pp. 1215.

    Google Scholar 

  16. U. F. Franck Chemical Oscillations, Angew. Chem. Int. Ed., 17 (1978), 1–15.

    Article  Google Scholar 

  17. P. L. Lakin-Thomas, G. G. Coté and S. Brody Circadian rhythms in Neurospora crassa: biochemistry and genetics, Crit. Rev. Microbiol., 17 (1990), 365–416.

    Article  Google Scholar 

  18. B. C. Goodwin Oscillatory behavior in enzymatic control processes, in: G. Weber, Ed., Advances in Enzyme Regulation, Vol. 3 (Pergamon Press, Oxford) (1965), 435–438.

    Google Scholar 

  19. P. Ruoff Introducing temperature-compensation in any reaction kinetic oscillator model, J. Interdiscipl. Cycle Res., 23 (1992), 92–99.

    Article  Google Scholar 

  20. P. Ruoff and L. Rensing The temperature-compensated Goodwin oscillator simulates many circadian clock properties, J. Theor. Biol., 179 (1996), 275–285.

    Article  Google Scholar 

  21. P. Ruoff General homeostasis in period and temperature-compensated chemical clock mutants formed by random selection conditions, Naturwissenschaften, 81 (1994), 456–459.

    Article  Google Scholar 

  22. P. Ruoff, M. Vinsjevik, S. Mohsenzadeh and L. Rensing The Goodwin model: Simulating the effect of cycloheximide and heat shock on the sporulation rhythm of Neurospora crassa, J. Theor. Biol., 196 (1999), 483–494.

    Article  Google Scholar 

  23. “Plurality is not to be assumed without necessity” — William of Ockham, 1285–1349.

    Google Scholar 

  24. P. Ruoff, M. Vinsjevik, C. Monnerjahn and L. Rensing The Goodwin model: Simulating the effect of light pulses on the circadian sporulation rhythm of Neurospora crassa, J. Theor. Biol., 209 (2001), 29–42.

    Article  Google Scholar 

  25. T. Olde Scheper, D. Klinkenberg, C. Pennartz and J. Van Pelt,A mathematical model for the intracellular circadian rhythm generator, J. Neurosci., 19 (1999), 40–47.

    Google Scholar 

  26. P. Ruoff, S. Mohsenzadeh and L. Rensing Circadian rhythms and protein turnover: the effect of temperature on the period lengths of clock mutants simulated by the Goodwin model, Naturwissenschaften, 83 (1996), 514–517.

    Article  Google Scholar 

  27. B. D. Aronson, K. A. Johnson and J. C. Dunlap Circadian clock locus frequency: Protein encoded by a single open reading frame defines period length and temperature compensation, PNAS, 91 (1994), 7683–7687.

    Article  Google Scholar 

  28. N. Y. Garceau, Y. Liu, J. J. Loros and J. C. Dunlap Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY, Cell, 89 (1997), 469–476.

    Article  Google Scholar 

  29. P. Ruoff, M. Vinsjevik, C. Monnerjahn and L. Rensing The Goodwin oscillator: On the importance of degradation reactions in the circadian clock, J. Biol. Rhythms, 14 (1999), 469–479.

    Article  Google Scholar 

  30. Y. Liu, J. Loros and J. C. Dunlap Phosphorylation of the Neurospora clock protein FREQUENCY determines it degradation rate and strongly influences the period length of the circadian clock, PNAS, 94 (1998), 83–95.

    Google Scholar 

  31. J. L. Price, J. Blau, A. Rothenfluh, M. Abodeely, B. Kloss and Michael W. Young double-time Is a Novel Drosophila Clock gene that regulates PERIOD Protein Accumulation, Cell, 94 (1998), 83–95.

    Article  Google Scholar 

  32. B. Kloss, J. L. Price, L. Saez, J. Blau, A. Rothenfluh, C. S. Wesley and M. W. Young The Drosophila Clock Gene double-time Encodes a Protein Closely Related to Human Casein Kinase Ie, Cell, 94 (1998), 97–107.

    Article  Google Scholar 

  33. P. Ruoff Antagonistic balance in the oregonator: about the possibility of temperature-compensation in the Belousov-Zhabotinsky reaction, Physica D, 84, (1995), 204–211.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Ruoff, P. (2004). Temperature-Compensation in Biological Clocks: Models and Experiments. In: Deutsch, A., Howard, J., Falcke, M., Zimmermann, W. (eds) Function and Regulation of Cellular Systems. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7895-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7895-1_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9614-6

  • Online ISBN: 978-3-0348-7895-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics