Skip to main content

Effects on the lungs: role of COX-2 inhibitors

  • Chapter
COX-2 Inhibitors

Part of the book series: Milestones in Drug Therapy MDT ((MDT))

  • 309 Accesses

Abstract

Intervention trials using cyclooxygenase (COX)-2 inhibitors in both humans and animals reveal that this enzyme has important regulatory roles in myriad facets of lung biology. These trials also indicate that COX-2 inhibitors have tremendous potential to treat several diseases for which there are currently suboptimal therapeutic options. In this chapter, we will first outline data regarding COX-2 expression in the lung. We will then focus on various lung disease models in which COX-2 expression is increased and is thought to have a pathogenic role, and then review investigations in which COX-2 inhibition has altered these models (Tab. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lassus P, Wolff H, Andersson S (2000) Cyclooxygenase-2 in human perinatal lung. Pediatr Res 47: 602–605

    Article  PubMed  CAS  Google Scholar 

  2. Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, Koki AT (2000) COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89: 2637–2645

    Article  PubMed  CAS  Google Scholar 

  3. Hasturk S, Kemp B, Kalapurakal SK, Kurie JM, Hong WK, Lee JS (2002) Expression of cyclooxygenase-1 and cyclooxygenase-2 in bronchial epithelium and nonsmall cell lung carcinoma. Cancer 94: 1023–1031

    Article  PubMed  CAS  Google Scholar 

  4. Funahashi A, Harland RW, LeFever A (1994) Association of increased prostaglandin E2 content in bronchoalveolar lavage fluid and intrathoracic malignancy. Chest 106: 166–172

    Article  PubMed  CAS  Google Scholar 

  5. Yoshimatsu K, Altorki NK, Golijanin D, Zhang F, Jakobsson PJ, Dannenberg AJ, Subbaramaiah K (2001) Inducible prostaglandin E synthase is overexpressed in non-small cell lung cancer. Clin Cancer Res 7: 2669–2674

    CAS  Google Scholar 

  6. Rozic JG, Chakraborty C, Lala PK (2001) Cyclooxygenase inhibitors retard murine mammary tumor progression by reducing tumor cell migration, invasiveness and angiogenesis. list J Cancer 93: 497–506

    CAS  Google Scholar 

  7. Plastaras JP, Guengerich FP, Nebert DW, Marnett LJ (2000) Xenobiotic-metabolizing cytochromes P450 convert prostaglandin endoperoxide to hydroxyheptadecatrienoic acid and the mutagen, malondialdehyde. J Biol Chem 275: 11784–11790

    Article  PubMed  CAS  Google Scholar 

  8. Koki AT, Masferrer JL (2002) Celecoxib: a specific COX-2 inhibitor with anticancer properties. Cancer Control 9(2 Suppl): 28–35

    PubMed  Google Scholar 

  9. Watkins DN, Lenzo JC, Segal A, Garlepp MJ, Thompson PJ (1999) Expression and localization of cyclo-oxygenase isoforms in non-small cell lung cancer. Eur Respir J 14: 412–418

    Article  PubMed  CAS  Google Scholar 

  10. Hida T, Yatabe Y, Achiwa H, Muramatsu H, Kozaki K, Nakamura S, Ogawa M, Mitsudomi T, Sugiura T, Takahashi T (1998) Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res 58: 3761–3764

    PubMed  CAS  Google Scholar 

  11. Wolff H, Saukkonen K, Anttila S, Karjalainen A, Vainio H, Ristimaki A (1998) Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res 58: 4997–5001

    PubMed  CAS  Google Scholar 

  12. Achiwa H, Yatabe Y, Hida T, Kuroishi T, Kozaki K, Nakamura S, Ogawa M, Sugiura T, Mitsudomi T, Takahashi T (1999) Prognostic significance of elevated cyclooxygenase 2 expression in primary, resected lung adenocarcinomas. Clin Cancer Res 5: 1001–1005

    PubMed  CAS  Google Scholar 

  13. Khuri FR, Wu H, Lee JJ, Kemp BL, Lotan R, Lippman SM, Feng L, Hong WK, Xu XC (2001) Cyclooxygenase-2 overexpression is a marker of poor prognosis in stage I non-small cell lung cancer. Clin Cancer Res 7: 861–867

    PubMed  CAS  Google Scholar 

  14. Brabender J, Park J, Metzger R, Schneider PM, Lord RV, Holscher AH, Danenberg KD, Danenberg PV (2002) Prognostic significance of cyclooxygenase 2 mRNA expression in non-small cell lung cancer. Ann Surg 253: 440–443

    Article  Google Scholar 

  15. Hosomi Y, Yokose T, Hirose Y, Nakajima R, Nagai K, Nishiwaki Y, Ochiai A (2000) Increased cyclooxygenase 2 (COX-2) expression occurs frequently in precursor lesions of human adenocarcinoma of the lung. Lung Cancer 30: 73–81

    Article  PubMed  CAS  Google Scholar 

  16. Hida T, Kozaki K, Ito H, Miyaishi 0, Tatematsu Y, Suzuki T, Matsuo K, Sugiura T, Ogawa M, Takahashi T et al (2002) Significant growth inhibition of human lung cancer cells both in vitro and in vivo by the combined use of a selective cyclooxygenase 2 inhibitor, JTE-522, and conventional anticancer agents. Clin Cancer Res 8: 2443–2447

    PubMed  CAS  Google Scholar 

  17. Rioux N, Castonguay A (1998) Prevention of NNK-induced lung tumorigenesis in A/J mice by acetylsalicylic acid and NS-398. Cancer Res 58: 5354–5360

    PubMed  CAS  Google Scholar 

  18. Yao R, Rioux N, Castonguay A, You M (2000) Inhibition of COX-2 and induction of apoptosis: two determinants of nonsteroidal anti-inflammatory drugs’ chemopreventive efficacies in mouse lung tumorigenesis. Exp Lung Res 26: 731–742

    Article  PubMed  Google Scholar 

  19. Huang M, Stolina M, Sharma S, Mao JT, Zhu L, Miller PW, Wollman J, Herschman H, Dubinett SM (1998) Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res 58: 1208–1216

    PubMed  CAS  Google Scholar 

  20. Hida T, Kozaki K, Muramatsu H, Masuda A, Shimizu S, Mitsudomi T, Sugiura T, Ogawa M, Takahashi T (2000) Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-small cell lung cancer cell lines. Clin Cancer Res 6: 2006–2011

    PubMed  CAS  Google Scholar 

  21. Koki AT, Khan NK, WoernerBM, Seibert K, Harmon, JL, Dannenberg AJ, Soslow RA, Masferrer JL (2002) Characterization of cyclooxygenase-2 (COX-2) during tumorigenesis in human epithelial cancers: evidence for potential clinical utility of COX-2 inhibitors in epithelial cancers. Prostag Leukotr Ess 66: 13–18

    CAS  Google Scholar 

  22. Williams CS, Tsujii M, Reese J, Dey SK, DuBois RN (2000) Host cyclooxygenase-2 modulates carcinoma growth. J Clin Invest 105: 1589–1594

    Article  PubMed  CAS  Google Scholar 

  23. Kisley LR, Barrett BS, Dwyer-Nield LD, Bauer AK, Thompson DC, Malkinson AM (2002) Celecoxib reduces pulmonary inflammation but not lung tumorigenesis in mice. Carcinogenesis 23: 1653–1660

    Article  PubMed  CAS  Google Scholar 

  24. Schreinemachers DM, Everson RB (1994) Aspirin use and lung, colon, and breast cancer incidence in a prospective study. Epidemiology 5: 138–146

    Article  PubMed  CAS  Google Scholar 

  25. Hanson WR, Thomas C (1983) 16, 16-dimethyl prostaglandin E2 increases survival of murine intestinal stem cells when given before photon radiation. Radiat Res 96: 393–398

    Article  PubMed  CAS  Google Scholar 

  26. Pillsbury HC, III, Webster WP, Rosenman J (1986) Prostaglandin inhibitor and radiotherapy in advanced head and neck cancers. Arch Otolaryngol Head Neck Surg 112: 552–553

    Article  PubMed  Google Scholar 

  27. Milas L, Hanson WR (1995) Eicosanoids and radiation. Eur J Cancer 31A: 1580–1585

    Article  PubMed  CAS  Google Scholar 

  28. Furuta Y, Hunter N, Barkley T, Jr, Hall E, Milas L (1988) Increase in radioresponse of murine tumors by treatment with indomethacin. Cancer Res 48: 3008–3013

    PubMed  CAS  Google Scholar 

  29. Milas L, Furuta Y, Hunter N, Nishiguchi I, Runkel S (1990) Dependence of indomethacin-induced potentiation of murine tumor radioresponse on tumor host immunocompetence. Cancer Res 50: 4473–4477

    PubMed  CAS  Google Scholar 

  30. Pyo H, Choy H, Amorino GP, Kim JS, Cao Q, Hercules SK, DuBois RN (2001) A selective cyclooxygenase-2 inhibitor, NS-398, enhances the effect of radiation in vitro and in vivo preferentially on the cells that express cyclooxygenase-2. Clin Cancer Res 7: 2998–3005

    PubMed  CAS  Google Scholar 

  31. Sousa A, Pfister R, Christie PE, Lane SJ, Nasser SM, Schmitz-Schumann M, Lee TH (1997) Enhanced expression of cyclo-oxygenase isoenzyme 2 (COX-2) in asthmatic airways and its cellular distribution in aspirin-sensitive asthma. Thorax 52: 940–945

    Article  PubMed  CAS  Google Scholar 

  32. Demoly P, Jaffuel D, Lequeux N, Weksler B, Creminon C, Michel FB, Godard P, Bousquet J (1997) Prostaglandin H synthase 1 and 2 immunoreactivities in the bronchial mucosa of asthmatics. Am J Respir Crit Care Med 155: 670–675

    PubMed  CAS  Google Scholar 

  33. Redington AE, Meng QH, Springall DR, Evans TJ, Creminon C, Maclouf J, Holgate ST, Howarth PH, Polak JM (2001) Increased expression of inducible nitric oxide synthase and cyclo-oxygenase-2 in the airway epithelium of asthmatic subjects and regulation by corticosteroid treatment. Thorax 56: 351–357

    Article  PubMed  CAS  Google Scholar 

  34. Holtzman MJ (1991) Arachidonic acid metabolism. Implications of biological chemistry for lung function and disease. Am Rev Respir Dis 143: 188–203

    PubMed  CAS  Google Scholar 

  35. Wenzel SE (1997) Arachidonic acid metabolites: mediators of inflammation in asthma. Pharmacotherapy 17(Pt 2): 3S–12S

    PubMed  CAS  Google Scholar 

  36. Murray JJ, Tonnel AB, Brash AR, Roberts LJ 2nd, Gosset P, Workman R, Capron A, Oates JA (1986) Release of prostaglandin D2 into human airways during acute antigen challenge. N Engl J Med 315: 800–804

    Article  PubMed  CAS  Google Scholar 

  37. Gardiner PJ, Collier HO (1980) Specific receptors for prostaglandins in airways. Prostaglandins 19: 819–841

    Article  PubMed  CAS  Google Scholar 

  38. Armour CL, Johnson PR, Alfredson ML, Black JL (1989) Characterization of contractile prostanoid receptors on human airway smooth muscle. Eur J Pharmacol 165: 215–222

    Article  PubMed  CAS  Google Scholar 

  39. Hardy C, Robinson C, Lewis RA, Tattersfield AE, Holgate S (1985) Airway and cardiovascular responses to inhaled prostacyclin in normal and asthmatic subjects. Am Rev Respir Dis 131: 18–21

    PubMed  CAS  Google Scholar 

  40. Gauvreau GM, Watson RM, O’Byrne PM (1999) Protective effects of inhaled PGE2 on allergen-induced airway responses and airway inflammation. Am J Respir Crit Care Med 159: 31–36

    PubMed  CAS  Google Scholar 

  41. Pavord ID, Wong CS, Williams J Tattersfield AE (1993) Effect of inhaled prostaglandin E2 on allergen-induced asthma. Am Rev Respir Dis 148: 87–90

    PubMed  CAS  Google Scholar 

  42. Varner AE, Busse WW, Lemanske RF, Jr, (1998) Hypothesis: decreased use of pediatric aspirin has contributed to the increasing prevalence of childhood asthma. Ann Allergy Asthma Immunol 81: 347–351

    Article  PubMed  CAS  Google Scholar 

  43. Varner AE (1999) The cyclooxygenase-2 theory of atopy and asthma. Pediatr Asthma Allergy Immunol 13: 43–50

    Article  Google Scholar 

  44. Hartert TV, Dworski RT, Mellen BG, Oates JA, Murray JJ, Sheller JR (2000) Prostaglandin E(2) decreases allergen-stimulated release of prostaglandin D(2) in airways of subjects with asthma. Am J Respir Crit Care Med 162: 637–640

    PubMed  CAS  Google Scholar 

  45. Dicpinigaitis PV (2001) Effect of the cyclooxygenase-2 inhibitor celecoxib on bronchial responsiveness and cough reflex sensitivity in asthmatics. Pulm Pharmacol Ther 14: 93–97

    Article  PubMed  CAS  Google Scholar 

  46. Fish JE, Ankin MG, Adkinson NF, Jr, Peterman VI (1981) Indomethacin modification of immediate-type immunologic airway responses in allergic asthmatic and non-asthmatic subjects: evidence for altered arachidonic acid metabolism in asthma. Am Rev Respir Dis 123: 609–614

    PubMed  CAS  Google Scholar 

  47. Kirby JG, Hargreave FE, Cockcroft DW, O’Byrne PM (1989) Effect of indomethacin on allergen-induced asthmatic responses. J Appl Physiol 66: 578–583

    PubMed  CAS  Google Scholar 

  48. Sladek K, Dworski R, Fitzgerald GA, Buitkus KL, Block FJ, Mamey SR, Jr, Sheller JR (1990) Allergen-stimulated release of thromboxane A2 and leukotriene E4 in humans. Effect of indomethacin. Am Rev Respir Dis 141: 1441–1445

    PubMed  CAS  Google Scholar 

  49. Gavett SH, Madison SL, Chulada PC, Scarborough PE, Qu W, Boyle JE, Tiano HF, Lee CA, Langenbach R, Roggli VL et al (1999) Allergic lung responses are increased in prostaglandin H synthase-deficient mice. J Clin Invest 104: 721–732

    Article  PubMed  CAS  Google Scholar 

  50. Rocca B, Spain LM, Pure E, Langenbach R, Patron C, Fitzgerald GA (1999) Distinct roles of prostaglandin H synthases 1 and 2 in T-cell development. J Clin Invest 103: 1469–1477

    Article  PubMed  CAS  Google Scholar 

  51. Peebles RS, Jr, Hashimoto K, Morrow JD, Dworski R, Collins RD, Hashimoto Y, Christman JW, Kang KH, Jarzecka K, Furlong J et al (2002) Selective cyclooxygenase-1 and -2 inhibitors each increase allergic inflammation and airway hyperresponsiveness in mice. Am J Respir Crit Care Med 165: 1154–1160

    PubMed  Google Scholar 

  52. Oguma T, Asano K, Shiomi T, Fukunaga K, Suzuki Y, Nakamura M, Matsubara H, Sheldon HK, Haley KJ, Lilly CM et al (2002) Cyclooxygenase-2 expression during allergic inflammation in guinea-pig lungs. Am J Respir Crit Care Med 165: 382–386

    PubMed  Google Scholar 

  53. Szczeklik A, Nizankowska E, Bochenek G, Nagraba K, Mejza F, Swierczynska M (2001) Safety of a specific COX-2 inhibitor in aspirin-induced asthma. Clin Exp Allergy 31: 219–225

    Article  PubMed  CAS  Google Scholar 

  54. Cowburn AS, Sladek K, Soja J, Adamek L, Nizankowska E, Szczeklik A, Lam BK, Penrose JF, Austen FK, Holgate ST et al (1998) Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest 101: 834–846

    Article  PubMed  CAS  Google Scholar 

  55. Sampson AP, Cowbum AS, Sladek K, Adamek L, Nizankowska E, Szczeklik A, Lam BK, Penrose JF, Austen KF, Holgate ST (1997) Profound overexpression of leukotriene C4 synthase in bronchial biopsies from aspirin-intolerant asthmatic patients. Int Arch Allergy Immunol 113: 355–357

    Article  PubMed  CAS  Google Scholar 

  56. Picado C, Valero A (2001) COX-1 sparing drugs in aspirin-sensitive asthma. Clin Exp Allergy 31: 179–181

    Article  PubMed  CAS  Google Scholar 

  57. Sestini P, Armetti L, Gambaro G, Pieroni MG, Refini RM, Sala A, Vaghi A, Folco GC, Bianco S, Robuschi M (1996) Inhaled PGE2prevents aspirin-induced bronchoconstriction and urinary LTE4 excretion in aspirin-sensitive asthma. Am J Respir Crit Care Med 153: 572–575

    PubMed  CAS  Google Scholar 

  58. Celik G, Bavbek S, Misirligil Z, Melli M (2001) Release of cysteinyl leukotrienes with aspirin stimulation and the effect of prostaglandin E2 on this release from peripheral blood leucocytes in aspirin-induced asthmatic patients. Clin Exp Allergy 31: 1615–1622

    Article  PubMed  CAS  Google Scholar 

  59. Woessner KM, Simon RA, Stevenson DD (2002) The safety of celecoxib in patients with aspirin-sensitive asthma. Arthritis Rheum 46: 2201–2206

    Article  PubMed  CAS  Google Scholar 

  60. Martin-Garcia C, Hinojosa M, Berges P, Camacho E, Garcia-Rodriguez R, Alfaya T, Iscar A (2002) Safety of a cyclooxygenase-2 inhibitor in patients with aspirin-sensitive asthma. Chest 121: 1812–1817

    Article  PubMed  CAS  Google Scholar 

  61. Bernard GR, Wheeler AP, Russell JA, Schein R, Summer WR, Steinberg KP, Fulkerson WJ, Wright PE, Christman BW, Dupont WD et al (1997) The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group. N Engl J Med 336: 912–918

    Article  PubMed  CAS  Google Scholar 

  62. Wollin L, Uhlig S, Nusing R, Wendel A (2001) Granulocyte-macrophage colony-stimulating factor amplifies lipopolysaccharide-induced bronchoconstriction by a neutrophil-and cyclooxygenase 2-dependent mechanism. Am J Respir Crit Care Med 163: 443–450

    PubMed  CAS  Google Scholar 

  63. Ermert M, Merkle M, Mootz R, Grimminger F, Seeger W, Ermert L (2000) Endotoxin priming of the cyclooxygenase-2-thromboxane axis in isolated rat lungs. Am J Physiol Lung Cell Mol Physiol 278: L1195–L1203

    PubMed  CAS  Google Scholar 

  64. Fischer LG, Hollmann MW, Horstman DJ, Rich GF (2000) Cyclooxygenase inhibitors attenuate bradykinin-induced vasoconstriction in septic isolated rat lungs. Anesth Analg 90: 625–631

    Article  PubMed  CAS  Google Scholar 

  65. Reddy RC, Chen GH, Tateda K, Tsai WC, Phare SM, Mancuso P, Peters-Golden M, Standiford TJ (2001) Selective inhibition of COX-2 improves early survival in murine endotoxemia but not in bacterial peritonitis. Am J Physiol Lung Cell Mol Physiol 281: L537—L543

    PubMed  CAS  Google Scholar 

  66. Zeldin DC, Wohlford-Lenane C, Chulada P, Bradbury JA, Scarborough PE, Roggli V, Langenbach R, Schwartz DA (2001) Airway inflammation and responsiveness in prostaglandin H synthasedeficient mice exposed to bacterial lipopolysaccharide. Am J Respir Cell Mol Biol 25: 457–465

    PubMed  CAS  Google Scholar 

  67. Martin C, Uhlig S, Ullrich V (2001) Cytokine-induced bronchoconstriction in precision-cut lung slices is dependent upon cyclooxygenase-2 and thromboxane receptor activation. Am J Respir Cell Mol Biol 24: 139–145

    PubMed  CAS  Google Scholar 

  68. Held HD, Uhlig S (2000) Mechanisms of endotoxin-induced airway and pulmonary vascular hyperreactivity in mice. Am J Respir Crit Care Med 162: 1547–1552

    PubMed  CAS  Google Scholar 

  69. Gust R, Kozlowski JK, Stephenson AH, Schuster DP (1999) Role of cyclooxygenase-2 in oleic acid-induced acute lung injury. Am J Respir Crit Care Med 160: 1165–1170

    PubMed  CAS  Google Scholar 

  70. Hierholzer C, Harbrecht B, Menezes JM, Kane J, MacMicking J, Nathan CF, Peitzman AB, Billiar TR, Tweardy DJ (1998) Essential role of induced nitric oxide in the initiation of the inflammatory response after hemorrhagic shock. J Exp Med 187: 917–928

    Article  PubMed  CAS  Google Scholar 

  71. Meldrum DR, Shenkar R, Sheridan BC, Cain BS, Abraham E, Harken AH (1997) Hemorrhage activates myocardial NFkappaB and increases TNF-alpha in the heart. J Mol Cell Cardiol 29: 2849–2854

    Article  PubMed  CAS  Google Scholar 

  72. Schmedtje JF, Jr, Ji YS, Liu WL, DuBois RN, Runge MS (1997) Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells. J Biol Chem 272: 601–608

    Article  PubMed  CAS  Google Scholar 

  73. Hierholzer C, Harbrecht BG, Billiar TR, Tweardy DJ (2001) Hypoxia-inducible factor-1 activation and cyclo-oxygenase-2 induction are early reperfusion-independent inflammatory events in hemorrhagic shock. Arch Orthop Trauma Surg 121: 219–222

    Article  PubMed  CAS  Google Scholar 

  74. Sunose Y, Takeyoshi I, Tsutsumi H, Kawata K, Tokumine M, Iwazaki S, Tomizawa N, Ohwada S, Matsumoto K, Morishita Y (2001) Effects of FK3311 on pulmonary ischemia-reperfusion injury in a canine model. J Surg Res 95: 167–173

    Article  PubMed  CAS  Google Scholar 

  75. Sunose Y, Takeyoshi I, Tsutsumi H, Ohwada S, Oriuchi N, Matsumoto K, Morishita Y (2001) Effect of a cyclooxygenase-2 inhibitor, FK3311, in a canine lung transplantation model. Ann Thorac Surg 72: 1165–1171

    Article  PubMed  CAS  Google Scholar 

  76. Wilborn J, Crofford LJ, Burdick MD, Kunkel SL, Strieter RM, Peters-Golden M (1995) Cultured lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis have a diminished capacity to synthesize prostaglandin E2 and to express cyclooxygenase-2. J Clin Invest 95: 1861–1868

    Article  PubMed  CAS  Google Scholar 

  77. Cruz-Gervis R, Stecenko AA, Dworski R, Lane KB, Loyd JE, Pierson R, King G, Brigham KL (2002) Altered prostanoid production by fibroblasts cultured from the lungs of human subjects with idiopathic pulmonary fibrosis. Respir Res 3: 17

    Article  PubMed  Google Scholar 

  78. Keerthisingam CB, Jenkins RG, Harrison NK, Hernandez-Rodriguez NA, Booth H, Laurent GJ, Hart SL, Foster ML, McAnulty RJ (2001) Cyclooxygenase-2 deficiency results in a loss of the anti-proliferative response to transforming growth factor-beta in human fibrotic lung fibroblasts and promotes bleomycin-induced pulmonary fibrosis in mice. Am J Pathol 158: 1411–1422

    Article  PubMed  CAS  Google Scholar 

  79. Bonner JC, Rice AB, Ingram JL, Moomaw CR, Nyska A, Bradbury A, Sessoms AR, Chulada PC, Morgan DL, Zeldin DC et al (2002) Susceptibility of cyclooxygenase-2-deficient mice to pulmonary fibrogenesis. Am J Pathol 161: 459–470

    Article  PubMed  CAS  Google Scholar 

  80. Lama V, Moore BB, Christensen P, Toews GB, Peters-Golden M (2002) Prostaglandin E2 synthesis and suppression of fibroblast proliferation by alveolar epithelial cells is cyclooxygenase-2- dependent. Am J Respir Cell Mol Biol 27: 752–758

    PubMed  CAS  Google Scholar 

  81. Cuzzocrea S, Mazzon E, Sautebin L, Dugo L, Serraino I, De Sarro A, Caputi AP (2002) Protective effects of Celecoxib on lung injury and red blood cells modification induced by carrageenan in the rat. Biochem Pharmacol 63: 785–795

    Article  PubMed  CAS  Google Scholar 

  82. Shields CJ, Winter DC, Redmond HP (2002) Lung injury in acute pancreatitis: mechanisms, prevention, and therapy. Curr Opin Crit Care 8: 158–163

    Article  PubMed  Google Scholar 

  83. Ethridge RT, Chung DH, Slogoff M, Ehlers RA, Hellmich MR, Rajaraman S, Saito H, Uchida T, Evers BM (2002) Cyclooxygenase-2 gene disruption attenuates the severity of acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology 123: 1311–1322

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Peebles, R.S., Hashimoto, K. (2004). Effects on the lungs: role of COX-2 inhibitors. In: Pairet, M., van Ryn, J. (eds) COX-2 Inhibitors. Milestones in Drug Therapy MDT. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7879-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7879-1_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9607-8

  • Online ISBN: 978-3-0348-7879-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics