Skip to main content

Drugs that target ionotropic excitatory amino acid receptors

  • Chapter
Cognitive Enhancing Drugs

Part of the book series: Milestones in Drug Therapy MDT ((MDT))

  • 285 Accesses

Abstract

The idea of glutamate as a neurotransmitter in the mammalian CNS emerged around the middle of the 20th century [1 – 3], and over the following years it became evident that multiple receptor subtypes were responsible for the physiological properties of glutamatergic neurotransmission [4]. Thanks to the combined efforts of physiology, molecular biology and pharmacology we gained a complex picture of the various types and flavours of ionotropic and metabotropic glutamate receptors. Today we possess the biological and chemical tools to characterize glutamate receptor function from the molecular level to the situation in vivo. Based on this knowledge, the clinical use of advanced glutamate receptor modulators for the treatment of e.g., cognition deficits comes into view. In this chapter I will focus on the two main subtypes of ionotropic glutamate receptors, namely those activated by the specific agonists AMPA and NMDA, and the pharmacological intervention which should improve cognition in man. For details about receptor subtype classification and structure the reader is referred to recent reviews (e.g., [5]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayashi T (1952) A physiological study of the epileptic seizures following cortical stimulation in animals and its application to human clinics. Jpn J Physiol 3: 46–64

    Article  PubMed  CAS  Google Scholar 

  2. Hayashi T (1954) Effects of sodium glutamate on the nervous system. Keio J Med 3: 183–192

    Article  Google Scholar 

  3. Curtis DR, Phillis JW, Watkins, JC (1959) Chemical excitation of spinal neurons. Nature 183: 611–612

    Article  PubMed  CAS  Google Scholar 

  4. Davies J, Watkins JC (1979) Selective antagonism of amino acid-induced and synaptic events in the cat spinal cord. J Physiol 297: 621–635

    PubMed  CAS  Google Scholar 

  5. Parsons CG, Danysz W, Lodge D (2002) Introduction to glutamate receptors, their function and physiology. In: Lodge D, Danysz W, Parsons CG (eds): Ionotropic glutamate receptors as therapeutic targets. Graham Publishing, Mountain Home, 1–30

    Google Scholar 

  6. Forsythe ID, Barnes-Davies M, Brew HM (1995) The calyx of Held: A model for transmission at mammalian glutamatergic synapses. In: Wheal HV, Thomson AM (eds): Excitatory amino acids and synaptic transmission. Academic Press, London, 133–144

    Google Scholar 

  7. Kauer JA, Malenka RC, Nicoll RA (1988) A persistent postsynaptic modification mediates longterm potentiation in the hippocampus. Neuron. 1: 911–917

    Article  PubMed  CAS  Google Scholar 

  8. Bliss TV, Collingridge GL (1993) A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361: 31–39

    Article  PubMed  CAS  Google Scholar 

  9. McKinney RA, Capogna M, Dun R, Gahwiler BH, Thompson SM (1999) Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat Neurosci 2: 44–49

    Article  PubMed  CAS  Google Scholar 

  10. Xiong H, Futamura T, Jourdi H, Zhou H, Takei N, Diverse-Pierluissi M, Plevy S, Nawa H (2002) Neurotrophins induce BDNF expression through the glutamate receptor pathway in neocortical neurons. Neuropharmacology 42: 903–912

    Article  PubMed  CAS  Google Scholar 

  11. Flood JF, Baker ML, Davis JL (1990) Modulation of memory processing by glutamic acid receptor agonists and antagonists. Brain Res 521: 197–202

    Article  PubMed  CAS  Google Scholar 

  12. Tryphonas L, Iverson F (1990) Neuropathology of excitatory neurotoxins: The domoic acid model. Toxicol Pathol 18: 165–169

    Article  PubMed  CAS  Google Scholar 

  13. Wienrich M, Brenner M, Loscher W, Palluk R, Pieper M, Potschka H, Weiser T (2001) In vivo pharmacology of BIIR 561 CL, a novel combined antagonist of AMPA receptors and voltage-dependent Na(+) channels. Br J Pharmacol 133: 789–796

    Article  PubMed  CAS  Google Scholar 

  14. Greenamyre JT, Maragos WF, Albin RL, Penney JB, Young AB (1988) Glutamate transmission and toxicity in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 12: 421–430

    Article  PubMed  CAS  Google Scholar 

  15. Cumin R, Bandle EF, Gamzu E, Haefely WE (1982) Effects of the novel compound aniracetam (Ro 13–5057) upon impaired learning and memory in rodents. Psychopharmacology 78: 104–111

    Article  PubMed  CAS  Google Scholar 

  16. Lee CR, Benfield P (1994) Aniracetam. An overview of its pharmacodynamic and pharmacokinetic properties, and a review of its therapeutic potential in senile cognitive disorders. Drugs Aging 4: 257–273

    Article  PubMed  CAS  Google Scholar 

  17. Ito I, Tanabe S, Kohda A, Sugiyama H (1990) Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam. J Physiol 424: 533–543

    PubMed  CAS  Google Scholar 

  18. Tang CM, Shi QY, Katchman A, Lynch G (1991) Modulation of the time course of fast EPSCs and glutamate channel kinetics by aniracetam. Science 254: 288–290

    Article  PubMed  CAS  Google Scholar 

  19. Isaacson JS, Nicoll RA (1991) Aniracetam reduces glutamate receptor desensitization and slows the decay of fast excitatory synaptic currents in the hippocampus. Proc Nati Acad Sci USA 88: 10936–10940

    Article  CAS  Google Scholar 

  20. Ozawa S, lino M, Abe M (1991) Excitatory synapse in the rat hippocampus in tissue culture and effects of aniracetam. Neurosci Res 12: 72–82

    Article  PubMed  CAS  Google Scholar 

  21. Xiao P, Staubli U, Kessler M, Lynch G (1991) Selective effects of aniracetam across receptor types and forms of synaptic facilitation in hippocampus. Hippocampus. 1: 373–380

    Article  PubMed  CAS  Google Scholar 

  22. Nicoletti F, Casabona G, Genazzani AA, Copani A, Aleppo G, Canonico PL, Scapagnini U (1992) Excitatory amino acids and neuronal plasticity: modulation of AMPA receptors as a novel substrate for the action of no-otropic drugs. Funct Neurol 7: 413–422

    PubMed  CAS  Google Scholar 

  23. Grove SJA, Rogers GA, Zhang MQ (2000) Positive modulators of the AMPA receptor. Exp Opin Ther Patents 10: 1539–1548

    Article  CAS  Google Scholar 

  24. Bertolino M, Baraldi M, Parenti C, Braghiroli D, DiBella M, Vicini S, Costa E (1993) Modulation of AMPA/kainate receptors by analogues of diazoxide and cyclothiazide in thin slices of rat hippocampus. Receptors Channels 1: 267–278

    PubMed  CAS  Google Scholar 

  25. Yamada KA, Hill MW, Hu Y, Covey DF (1998) The diazoxide derivative 7-chloro-3- methy1–3,4-dihydro-2H-1,2,4-benzothiadiazine-S,S-dioxide augments AMPA- and GABA-mediated synaptic responses in cultured hippocampal neurons. Neurobiol Dis 5: 196–205

    Article  PubMed  CAS  Google Scholar 

  26. Arai A, Guidotti A, Costa E, Lynch G (1996) Effect of the AMPA receptor modulator IDRA 21 on LTP in hippocampal slices. Neuroreport 7: 2211–2215

    Article  PubMed  CAS  Google Scholar 

  27. Zivkovic I, Thompson DM, Bertolino M, Uzunov D, DiBella M, Costa E, Guidotti A (1995) 7-Chloro-3-methyl-3–4-dihydro-2H-1,2,4 benzothiadiazine S,S-dioxide (IDRA 21): a benzothiadiazine derivative that enhances cognition by attenuating DL-alpha-amino-2,3-dihydro-5- methy1–3-oxo-4-isoxazolepropanoic acid (AMPA) receptor desensitization. J Pharmacol Exp Ther 272: 300–309

    PubMed  CAS  Google Scholar 

  28. Thompson DM, Guidotti A, DiBella M, Costa E (1995) 7-Chloro-3-methyl-3,4-dihydro-2H1,2,4-benzothiadiazine S,S-dioxide (IDRA 21), a congener of aniracetam, potently abates phar-macologically induced cognitive impairments in patas monkeys. Proc Natl Acad Sci USA 92: 7667–7671

    Article  PubMed  CAS  Google Scholar 

  29. Buccafusco JJ, Weiser T, Winter K, Klinder K, Terry AV Jr (2003) The effects of IDRA 21, a positive modulator of the AMPA receptor, on delayed matching performance by young and aged rhesus monkeys. Neuropharmacology; in press

    Google Scholar 

  30. Arai A, Kessler M, Rogers G, Lynch G (1996) Effects of a memory-enhancing drug on DL-alphaamino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor currents and synaptic transmission in hippocampus. J Pharmacol Exp Ther 278: 627–638

    PubMed  CAS  Google Scholar 

  31. Staubli U, Rogers G, Lynch G (1994) Facilitation of glutamate receptors enhances memory. Proc Natl Acad Sci USA 91: 777–781

    Article  PubMed  CAS  Google Scholar 

  32. Hampson RE, Rogers G, Lynch G, Deadwyler SA (1998) Facilitative effects of the ampakine CX516 on short-term memory in rats: Enhancement of delayed-nonmatch-to-sample performance. J Neurosci 18: 2740–2747

    PubMed  CAS  Google Scholar 

  33. Hampson RE, Rogers G, Lynch G, Deadwyler SA (1998) Facilitative effects of the ampakine CX516 on short-term memory in rats: correlations with hippocampal neuronal activity. J Neurosci 18: 2748–2763

    PubMed  CAS  Google Scholar 

  34. Lynch G, Granger R, Ambros-Ingerson J, Davis CM, Kessler M, Schehr R (1997) Evidence that a positive modulator of AMPA-type glutamate receptors improves delayed recall in aged humans. Exp Neurol 145: 89–92

    Article  PubMed  CAS  Google Scholar 

  35. Lynch G, Kessler M, Rogers G, Ambros-Ingerson J, Granger R, Schehr RS (1996) Psychological effects of a drug that facilitates brain AMPA receptors. Int Clin Psychopharmacol 11: 13–19

    Article  PubMed  CAS  Google Scholar 

  36. Ingvar M, Ambros-Ingerson J, Davis M, Granger R, Kessler M, Rogers GA, Schehr RS, Lynch G (1997) Enhancement by an ampakine of memory encoding in humans. Exp Neurol 146: 553–559

    Article  PubMed  CAS  Google Scholar 

  37. Danysz W (2002) CX-516 Cortex pharmaceuticals. Curr Opin Investig Drugs 3: 1081–1088

    PubMed  CAS  Google Scholar 

  38. Quirk JC, Nisenbaum ES (2002) LY404187: A novel positive allosteric modulator of AMPA receptors. CNS Drug Rev 8: 255–282

    Article  PubMed  CAS  Google Scholar 

  39. Lebrun C, Pilliere E, Lestage P (2000) Effects of S 18986–1, a novel cognitive enhancer, on memory performances in an object recognition task in rats. Eur J Pharmacol 401: 205–212

    Article  PubMed  CAS  Google Scholar 

  40. Yamada KA (1998) AMPA receptor activation potentiated by the AMPA modulator 1-BCP is toxic to cultured rat hippocampal neurons. Neurosci Lett 249: 119–122

    Article  PubMed  CAS  Google Scholar 

  41. Yamada KA, Covey DF, Hsu CY, Hu R, Hu Y, He YY (1998) The diazoxide derivative IDRA 21 enhances ischemic hippocampal neuron injury. Ann Neurol 43: 664–669

    Article  PubMed  CAS  Google Scholar 

  42. Bahr BA, Bendiske J, Brown QB, Munirathinam S, Caba E, Rudin M, Urwyler S, Sauter A, Rogers G (2002) Survival signaling and selective neuroprotection through glutamatergic transmission. Exp Neurol 174: 37–47

    Article  PubMed  CAS  Google Scholar 

  43. Dicou E, Rangon CM, Guimiot F, Spedding M, Gressens P (2003) Positive allosteric modulators of AMPA receptors are neuroprotective against lesions induced by an NMDA agonist in neonatal mouse brain. Brain Res 970: 221–225

    Article  PubMed  CAS  Google Scholar 

  44. Schwartz BL, Hashtroudi S, Herting RL, Schwartz P, Deutsch SI (1996) d-Cycloserine enhances implicit memory in Alzheimer patients. Neurology 46: 420–424

    Article  PubMed  CAS  Google Scholar 

  45. Danysz W, Archer T (1994) Glutamate learning, and dementia-selection of evidence. Amino Acids 7: 147–163

    Article  CAS  Google Scholar 

  46. Sams-Dodd F (1999) Phencyclidine in the social interaction test: An animal model of schizophrenia with face and predictive validity. Rev Neurosci 10: 59–90

    Article  PubMed  CAS  Google Scholar 

  47. Murray JB (2002) Phencyclidine (PCP): A dangerous drug, but useful in schizophrenia research. J Psychol 136: 319–327

    Article  PubMed  Google Scholar 

  48. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the non-competitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51: 199–214

    Article  PubMed  CAS  Google Scholar 

  49. Parsons CG, Gruner R, Rozental J, Millar J, Lodge D (1993) Patch clamp studies on the kinetics and selectivity of N-methyl-D-aspartate receptor antagonism by memantine (1-amino-3,5-dimethyladamantan). Neuropharmacology 32: 1337–1350

    Article  PubMed  CAS  Google Scholar 

  50. Frankiewicz T, Parsons CG (1999) Memantine restores long-term potentiation impaired by tonic N-methyl-D-aspartate (NMDA) receptor activation following reduction of Mg2+ in hippocampal slices. Neuropharmacology 38: 1253–1259

    Article  PubMed  CAS  Google Scholar 

  51. Jain KK (2000) Evaluation of memantine for neuroprotection in dementia. Exp Opin Invest Drugs 9: 1397–1406

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Weiser, T. (2004). Drugs that target ionotropic excitatory amino acid receptors. In: Buccafusco, J.J. (eds) Cognitive Enhancing Drugs. Milestones in Drug Therapy MDT. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7867-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7867-8_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9603-0

  • Online ISBN: 978-3-0348-7867-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics