Skip to main content

Stationary Solutions for a Navier-Stokes/Cahn-Hilliard System with Singular Free Energies

  • Chapter
Recent Developments of Mathematical Fluid Mechanics

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

We consider a stationary Navier-Stokes/Cahn-Hilliard type system. The system describes a so-called diffuse interface model for the two-phase flow of two macroscopically immiscible incompressible viscous fluids in the case of matched densities, also known as Model H. We prove existence of weak solutions for the stationary system for general exterior forces and singular free energies, which ensure that the order parameter stays in the physical reasonable interval. To this end we reduce the system to an abstract differential inclusion and apply the theory of multi-valued pseudo-monotone operators.

Dedicated to Yoshihiro Shibata on the occasion of his 60th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194(2), 463–506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Abels, M. Wilke, Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. 67(11), 3176–3193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Abels, D. Depner, H. Garcke, Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities. J. Math. Fluid Mech. 15(3), 453–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot. Anal. 20(2), 175–212 (1999). ISSN 0921–7134

    Google Scholar 

  5. J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Google Scholar 

  6. M.E. Gurtin, D.Polignone, J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(6), 815–831 (1996). ISSN 0218–2025

    Google Scholar 

  7. P.C. Hohenberg, B.I. Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)

    Article  Google Scholar 

  8. C. Liu, J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179(3–4), 211–228 (2003). ISSN 0167–2789

    Google Scholar 

  9. M. Rŭžička, Nichtlineare Funktionalanalysis. Eine Einführung (Springer, Berlin, 2004)

    Google Scholar 

  10. V.N. Starovoĭtov, On the motion of a two-component fluid in the presence of capillary forces. Mat. Zametki 62(2), 293–305 (1997). ISSN 0025–567X

    Google Scholar 

  11. E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/B (Springer, New York, 1990), pp. i–xvi and 469–1202. ISBN 0–387–97167–X

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Abels .

Editor information

Editors and Affiliations

Appendix

Appendix

Lemma 5.1

Let X be a real, reflexive Banach space and \(\tilde{\mathcal{A}}: X \times X \rightarrow X'\) such that for all u ∈ X:

  1. 1.

    \(\tilde{\mathcal{A}} (u,.): X \rightarrow X'\) is monotone and hemi-continuous.

  2. 2.

    \(\tilde{\mathcal{A}} (.,u): X \rightarrow X'\) is completely continuous.

Then the operator \(\mathcal{A}: X \rightarrow X'\) defined by \(\mathcal{A}(u) = \tilde{\mathcal{A}} (u,u)\) is pseudo-monotone.

Proof

Let \((u_{k})_{k\in \mathbb{N}} \subseteq X\) be such that \(u_{k} \rightharpoonup u\) in X and

$$\displaystyle{\mathop{\lim \sup }\limits_{k \rightarrow \infty }\langle \mathcal{A}(u_{k}),u_{k} - u\rangle _{X',X} \leq 0.}$$

We have to show that

$$\displaystyle{\mathop{\lim \inf }\limits_{k \rightarrow \infty }\langle \mathcal{A}(u_{k}),u_{k} - w\rangle _{X',X}\ \geq \ \langle \mathcal{A}(u),u - w\rangle _{X',X}}$$

for all w ∈ X. Since \(\tilde{\mathcal{A}} (u,.)\) is monotone,

$$\displaystyle\begin{array}{rcl} \langle \tilde{\mathcal{A}}(u_{k},u_{k}) - \tilde{\mathcal{A}} (u_{k},w_{t}),u_{k} - w_{t}\rangle _{X',X} \geq 0,& & {}\\ \end{array}$$

where we choose w t : = (1 − t)u + tv for 0 < t < 1 and v ∈ X arbitrary.

Now we use that u k w t  = (u k u) + t(uv) and thus we get two terms. For the first one we use

$$\displaystyle\begin{array}{rcl} \mathop{\lim \inf }\limits_{k \rightarrow \infty }\langle \tilde{\mathcal{A}} (u_{k},u_{k}) - \tilde{\mathcal{A}} (u_{k},w_{t}),u_{k} - u\rangle _{X',X}& =& \mathop{\lim \inf }\limits_{k \rightarrow \infty }\langle \mathcal{A}(u_{k}),u_{k} - u\rangle _{X',X}, {}\\ \end{array}$$

where we used that \(\tilde{\mathcal{A}} (\cdot,w_{t})\) is completely continuous for every 0 < t < 1.

This means that for the remaining terms it holds

$$\displaystyle\begin{array}{rcl} \mathop{\lim \inf }\limits_{k \rightarrow \infty }\left (\langle \tilde{\mathcal{A}} (u_{k},u_{k}) - \tilde{\mathcal{A}} (u_{k},w_{t}),t(u - v)\rangle _{X',X} +\langle \mathcal{A}(u_{k}),u_{k} - u\rangle _{X',X}\right ) \geq \ 0.& & {}\\ \end{array}$$

Since \(\mathop{\lim \sup }\limits_{k \rightarrow \infty }\langle \mathcal{A}(u_{k}),u_{k} - u\rangle _{X',X} \leq 0\) and 0 < t < 1, we can conclude

$$\displaystyle\begin{array}{rcl} \mathop{\lim \inf }\limits_{k \rightarrow \infty }\left (\langle \tilde{\mathcal{A}} (u_{k},u_{k}) - \tilde{\mathcal{A}} (u_{k},w_{t}),u - v\rangle _{X',X} +\langle \mathcal{A}(u_{k}),u_{k} - u\rangle _{X',X}\right ) \geq \ 0.& & {}\\ \end{array}$$

This yields

$$\displaystyle\begin{array}{rcl} \mathop{\lim \inf }\limits_{k \rightarrow \infty }\left (\langle \mathcal{A}(u_{k}),u_{k} - v\rangle _{X',X} -\langle \tilde{\mathcal{A}} (u_{k},w_{t}),u - v\rangle _{X',X}\right ) \geq 0& & {}\\ \end{array}$$

Using that \(\tilde{\mathcal{A}} (u_{k},\cdot )\) is hemi-continuous for every \(k \in \mathbb{N}\) and \(\tilde{\mathcal{A}} (\cdot,u)\) is completely continuous for every u ∈ X yields the lemma. □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Basel

About this chapter

Cite this chapter

Abels, H., Weber, J. (2016). Stationary Solutions for a Navier-Stokes/Cahn-Hilliard System with Singular Free Energies. In: Amann, H., Giga, Y., Kozono, H., Okamoto, H., Yamazaki, M. (eds) Recent Developments of Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0939-9_3

Download citation

Publish with us

Policies and ethics