Skip to main content
Log in

Strong solutions for an incompressible Navier–Stokes/Allen–Cahn system with different densities

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we investigate a coupled Navier–Stokes/Allen–Cahn system describing a diffuse interface model for two-phase flow of viscous incompressible fluids with different densities in a bounded domain \(\Omega \subset \mathbb R^N\)(\(N=2,3\)). We prove the existence and uniqueness of local strong solutions to the initial boundary value problem when the initial density function \(\rho _0\) has a positive lower bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194(2), 463–506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abels, H.: Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow. SIAM J. Math. Anal. 44(1), 316–340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abels, H., Breit, D.: Weak solutions for a non-Newtonian diffuse interface model with different densities. Nonlinearity 29(11), 3426–3453 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allen, S., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1084–1095 (1979)

    Article  Google Scholar 

  5. Abels, H., Depner, D., Garcke, H.: Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities. J. Math. Fluid Mech. 15(3), 453–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abels, H., Feireisl, E.: On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana Univ. Math. J. 57(2), 659–698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Abels, H., Garcke, H., Grn, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3), 1150013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Antontsev, S.A., Kazhikov, A.V.: Mathematical Study of Flows of Nonhomogeneous Fluids. Lecture Notes. Novosibirsk State University, Novosibirsk (1973). (In Russian)

    Google Scholar 

  9. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. In: Annual Review of Fluid Mechanics, Annual Reviews, Palo Alto, vol. 30, pp. 139–165 (1998)

  10. Boyer, F.: Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot. Anal. 20(2), 175–212 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Boyer, F.: A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31, 41–68 (2002)

    Article  MATH  Google Scholar 

  12. Brenner, S.C.: Korn’s inequalities for piecewise \(H^1\) vector fields. Math. Comput. 73(247), 1067–1087 (2004)

    Article  MATH  Google Scholar 

  13. Choe, H.J., Kim, H.: Strong solutions of the Navier–Stokes equations for nonhomogeneous incompressible fluids. Commun. Partial Differ. Equ. 28, 1183–1201 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, X.: Generation, propagation, and annihilation of metastable patterns. J. Differ. Equ. 206, 399–437 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duvaut, G., Lions, J .L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  16. Ding, S., Li, Y., Luo, W.: Global solutions for a coupled compressible Navier–Stokes/Allen–Cahn system in 1-D. J. Math. Fluid Mech. 15(2), 335–360 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng, J.J, Liu, C., Shen, J., Yue, P.: An energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: advantages and challenges. In: Modeling of Soft Matter, Volume 141 of IMA Volumes in Mathematics and its Applications, pp. 1–26. Springer, New York (2005)

  18. Feireisl, E., Petzeltová, H., Rocca, E., Schimperna, G.: Ayalysis of a phase-field model for two-phase compressible fluids. Math. Models Methods Appl. Sci. 20(7), 1129–1160 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. Linearized steady problems, volume 1. In: Springer Tracts in Natural Philosophy, vol. 38, Springer, New York (1994)

  20. Gal, C.G., Grasselli, M.: Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D. Ann. I. H. Poincaré-AN 27(1), 401–436 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gal, C.G., Grasselli, M.: Instability of two-phase flows: a lower bound on the dimension of global attractor of the Cahn–Hilliard–Navier–Stokes system. Physica D 240(7), 629–635 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ilmanen, T.: Convergence of the Allen–Cahn equation to Brakke’s motion by mean curvature. J. Differ. Geom. 38(2), 417–461 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jiang, J., Li, Y., Liu, C.: Two-phase incompressible flows with variable density: an energetic variational approach. Discret. Contin. Dyn. Syst. 37(6), 3243–3284 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jiang, F., Tan, Z.: Global weak solution to the flow of liquid crystals system. Math. Methods Appl. Sci. 32(17), 2243–2266 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kazhikov, A.V.: Resolution of boundary value problems for nonhomogeneous viscous fluids. Dokl. Akad. Nauh. 216, 1008–1010 (1974). (in Russian)

    Google Scholar 

  26. Kotschote, M.: Strong solutions of the Navier–Stokes equations for a compressible fluid of Allen–Cahn type. Arch. Ration. Mech. Anal. 206(6), 489–514 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kotschote, M., Zacher, R.: Strong solutions in the dynamical theory of compressible fluid mixtures. Math. Models Methods Appl. Sci. 25(7), 1217–1256 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lions, P.L.: Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models, Volume 3 of Oxford Lecture Series in Mathematics and Its Applications. Oxford Science Publications (1996)

  29. Liu, W., Bertozzi, A.L., Kolokolnikov, T.: Diffuse interface surface tension models in an expanding flow. Commun. Math. Sci. 10(1), 387–418 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, Y., Ding, S., Huang, M.: Blow-up criterion for an incompressible Navier–Stokes/Allen–Cahn system with different densities. Discret. Contin. Dyn. Syst. Ser. B 21(5), 1507–1523 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ladyzenskaja, O., Solonnikov, V., Uraltseva, N.: Linear and quasilinear equations of parabolic type. In: Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)

  32. Liu, C., Shen, J., Yang, X.: Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J. Sci. Comput. 62(2), 601–622 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454(1978), 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, X., Zhang, Z.: Existence of the flow of liquid crystals system. Chin. Ann. Math. 30A(1), 1–20 (2009)

    MathSciNet  Google Scholar 

  35. Simon, J.: Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure. SIAM J. Math. Anal. 21(5), 1093–1117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Soner, H.M.: Ginzburg-Landau equation and motion by mean curvature. II. Development of the initial interface. J. Geom. Anal. 7(3), 477–491 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, p. 408. AMS Chelsea Publishing, Providence (2001). (Reprint of the 1984 edition)

    MATH  Google Scholar 

  38. Tan, Z., Lim, K.M., Khoo, B.C.: An adaptive mesh redistribution method for the incompressible mixture flows using phase-field model. J. Comput. Phys. 225(1), 1137–1158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wen, H., Ding, S.: Solutions of incompressible hydrodynamic flow of liquid crystals. Nonlinear Anal. Real World Appl. 12(3), 1510–1531 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xu, X., Zhao, L., Liu, C.: Axisymmetric solutions to coupled Navier–Stokes/Allen–Cahn equations. SIAM J. Math. Anal. 41(6), 2246–2282 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, X., Feng, J.J., Liu, C., Shen, J.: Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method. J. Comput. Phys. 218(1), 417–428 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhao, L., Guo, B., Huang, H.: Vanishing viscosity limit for a coupled Navier–Stokes/Allen–Cahn system. J. Math. Anal. Appl. 384(2), 232–245 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Huang, M. Strong solutions for an incompressible Navier–Stokes/Allen–Cahn system with different densities. Z. Angew. Math. Phys. 69, 68 (2018). https://doi.org/10.1007/s00033-018-0967-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0967-0

Keywords

Mathematics Subject Classification

Navigation