Skip to main content

Local Regularity Results for the Instationary Navier-Stokes Equations Based on Besov Space Type Criteria

  • Chapter
Recent Developments of Mathematical Fluid Mechanics

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

Consider a weak instationary solution u of the Navier-Stokes equations in a domain \(\Omega \subset \mathbb{R}^{3}\), i.e.,

$$u \in L^{\infty }\big(0,T;L^{2}(\Omega )\big) \cap L^{2}\big(0,T;W_{0}^{1,2}(\Omega )\big)$$

and u solves the Navier-Stokes system in the sense of distributions. It is a famous open problem whether weak solutions are unique and smooth. A main step in the analysis of this problem is to show that the given weak solution is a strong one in the sense of J. Serrin, i.e., \(u \in L^{s}\big(0,T;L^{q}(\Omega )\big)\) where s > 2, q > 3 and \(\frac{2} {s} + \frac{3} {q} = 1\). In this review we report on recent results on this problem, considering first of all optimal initial values u(0) to yield a local in time strong solution, then criteria to prove regularity locally on subintervals of [0, T). Special emphasis is put on results for smooth bounded and also general unbounded domains. Most criteria are based on conditions of Besov space type.

To our colleague Prof. Yoshihiro Shibata on the occasion of his 60th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Amann, Nonhomogeneous Navier-Stokes equations with integrable low-regularity data, in Nonlinear Problems in Mathematical Physics and Related Topics, II. International Mathematical Series (Kluwer Academic/Plenum Publishing, New York, 2002), pp. 1–28

    Google Scholar 

  2. M.E. Bogovskiĭ, Decomposition of \(L_{p}(\Omega, \mathbb{R}^{n})\) into the direct sum of subspaces of solenoidal and potential vector fields. Soviet Math. Dokl. 33, 161–165 (1986)

    Google Scholar 

  3. W. Borchers, T. Miyakawa, Algebraic L 2 decay for Navier-Stokes flows in exterior domains. Acta Math. 165, 189–227 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Cheskidov, P. Constantin, S. Friedlander, R. Shvydkoy, Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21, 1233–1252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Cheskidov, S. Friedlander, R. Shvydkoy, On the energy equality for weak solutions of the 3D Navier-Stokes equations, in Advances in Mathematical Fluid Mechanics (Springer, Berlin 2010), pp. 171–175

    MATH  Google Scholar 

  6. E.B. Fabes, B.F. Jones, N.M. Rivière, The initial value problem from the Navier-Stokes equations with data in L p. Arch. Ration. Mech. Anal. 45, 222–240 (1972)

    Article  MATH  Google Scholar 

  7. R. Farwig, C. Komo, Regularity of weak solutions to the Navier-Stokes equations in exterior domains. Nonlinear Differ. Equ. Appl. 17, 303–321 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Farwig, C. Komo, Optimal initial value conditions for strong solutions of the Navier–Stokes equations in an exterior domain. Analysis (Munich) 33, 101–119 (2013)

    MathSciNet  MATH  Google Scholar 

  9. R. Farwig, J. Sauer, Very weak solutions of the stationary Stokes equations on unbounded domains of half space type. Math. Bohemica 140, 81–109 (2015)

    MathSciNet  MATH  Google Scholar 

  10. R. Farwig, H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains. J. Math. Soc. Japan 46, 607–643 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Farwig, H. Sohr, Optimal initial value conditions for the existence of local strong solutions of the Navier-Stokes equations. Math. Ann. 345, 631–642 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Farwig, H. Sohr, On the existence of local strong solutions for the Navier-Stokes equations in completely general domains. Nonlinear Anal. 73, 1459–1465 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Farwig, Y. Taniuchi, On the energy equality of Navier–Stokes equations in general unbounded domains. Arch. Math. 95, 447–456 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Farwig, H. Kozono, H. Sohr, An L q–approach to Stokes and Navier-Stokes equations in general domains. Acta Math. 195, 21–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Farwig, G.P. Galdi, H. Sohr, A new class of weak solutions of the Navier-Stokes equations with nonhomogeneous data. J. Math. Fluid Mech. 8, 423–444 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Farwig, H. Kozono, H. Sohr, Local in time regularity properties of the Navier-Stokes equations. Indiana Univ. Math. J. 56, 2111–2131 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Farwig, H. Kozono, H. Sohr, On the Helmholtz decomposition in general unbounded domains. Arch. Math. 88, 239–248 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Farwig, H. Kozono, H. Sohr, Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data. J. Math. Soc. Japan 59, 127–150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Farwig, H. Kozono, H. Sohr, Very weak, weak and strong solutions to the instationary Navier-Stokes system, in Topics on Partial Differential Equations, ed. by P. Kaplický, Š. Nečasová. Lecture Notes of the J. Nečas Center Mathematical Modeling, vol. 2 (MatfyzPress Publishing House/Charles University, Prague, 2007), pp. 1–54

    Google Scholar 

  20. R. Farwig, H. Kozono, H. Sohr, Energy-based regularity criteria for the Navier-Stokes equations. J. Math. Fluid Mech. 11, 1–14 (2008)

    MathSciNet  MATH  Google Scholar 

  21. R. Farwig, H. Sohr, W. Varnhorn, On optimal initial value conditions for local strong solutions of the Navier-Stokes equations. Ann. Univ. Ferrara 55, 89–110 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Farwig, H. Kozono, H. Sohr, On the Stokes operator in general unbounded domains. Hokkaido Math. J. 38, 111–136 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Farwig, H. Kozono, H. Sohr, Regularity of weak solutions for the Navier-Stokes equations via energy criteria, in Advances in Mathematical Fluid Mechanics, ed. by R. Rannacher, A. Sequeira (Springer, Berlin, 2010), pp. 215–227

    Chapter  Google Scholar 

  24. R. Farwig, H. Sohr, W. Varnhorn, Necessary and sufficient conditions on local strong solvability of the Navier-Stokes systems. Appl. Anal. 90, 47–58 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Farwig, H. Sohr, W. Varnhorn, Extensions of Serrin’s uniqueness and regularity conditions for the Navier-Stokes equations. J. Math. Fluid Mech. 14, 529–540 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Farwig, H. Sohr, W. Varnhorn, Besov space regularity conditions for weak solutions of the Navier-Stokes equations. J. Math. Fluid Mech. 16, 307–320 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ch. Fefferman, Existence and Smoothness of the Navier–Stokes Equations (2000). http://www.claymath.org/millennium/Navier-Stokes_Equations/navierstokes.pdf

    Google Scholar 

  28. H. Fujita, T. Kato, On the Navier-Stokes initial value problem. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Fujiwara, H. Morimoto, An L r -theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo (1A) 24, 685–700 (1977)

    Google Scholar 

  30. Y. Giga, Analyticity of the semigroup generated by the Stokes operator in L r -spaces. Math. Z. 178, 287–329 (1981)

    Article  MathSciNet  Google Scholar 

  31. Y. Giga, Domains of fractional powers of the Stokes operator in L r -spaces. Arch. Ration. Mech. Anal. 89, 251–265 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Y. Giga, Solution for semilinear parabolic equations in L p and regularity of weak solutions for the Navier-Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Giga, H. Sohr, Abstract L q-estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1950–1951)

    Article  MathSciNet  MATH  Google Scholar 

  35. T. Kato, Strong L p-solutions of the Navier-Stokes equation in \(\mathbb{R}^{m}\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Koch, D. Tataru, Well-posedness for the Navier-Stokes equations. Adv. Math. 157, 22–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. C. Komo, Necessary and sufficient conditions for local strong solvability of the Navier-Stokes equations in exterior domains. Technische Universität Darmstadt, FB Mathematik, J. Evol. Equ. 14, 713–725 (2014)

    Google Scholar 

  38. H. Kozono, Uniqueness and regularity of weak solutions to the Navier-Stokes equations, in Recent topics on Mathematical Theory of Viscous Incompressible fluid, Tsukuba, 1996. Lecture Notes in Numerical and Applied Analysis, vol. 16 (Kinokuniya, Tokyo, 1998), pp. 161–208

    Google Scholar 

  39. H. Kozono, H. Sohr, Remark on uniqueness of weak solutions to the Navier-Stokes equations. Analysis 16, 255–271 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. P.C. Kunstmann, \(H^{\infty }\)-calculus for the Stokes operator on unbounded domains. Arch. Math. 91, 178–186 (2008)

    Google Scholar 

  41. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  42. P. Maremonti, V.A. Solonnikov, On nonstationary Stokes problem in exterior domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24, 395–449 (1997)

    Google Scholar 

  43. V.N. Maslennikova, M.E. Bogovskiĭ, Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries. Rend. Sem. Mat. Fis. Milano LVI, 125–138 (1986)

    Google Scholar 

  44. A.S. Mikhailov, T.N. Shilkin, \(L_{3,\infty }\)-solutions to the 3D-Navier-Stokes system in a domain with a curved boundary. Zap. Nauchn. Semin. POMI 336, 133–152 (2006) (Russian). J. Math. Sci. 143, 2924–2935 (2007) (English)

    Google Scholar 

  45. T. Miyakawa, On the initial value problem for the Navier-Stokes equations in L p-spaces. Hiroshima Math. J. 11, 9–20 (1981)

    MathSciNet  MATH  Google Scholar 

  46. T. Miyakawa, H. Sohr, On energy inequality, smoothness and large time behavior in L 2 for weak solutions of the Navier-Stokes equations in exterior domains. Math. Z. 199, 455–478 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  47. F. Riechwald, Very weak solutions to the Navier-Stokes equaitons in general unbounded domains. Ph.D. thesis, Technische Universität Darmstadt, Logos-Verlag, Berlin, 2011

    Google Scholar 

  48. F. Riechwald, Interpolation of sum and intersection spaces of L q-type and applications to the Stokes problem in general unbounded domains. Ann. Univ. Ferrara 58, 167–181 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. G. Seregin, On smoothness of \(L_{3,\infty }\)-solutions to the Navier-Stokes equations up to boundary. Math. Ann. 332, 219–238 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Serrin, The initial value problem for the Navier-Stokes equations, in Nonlinear Problems, ed. by R.E. Langer (University of Wisconsin Press, Madison, WI, 1963)

    Google Scholar 

  51. M. Shinbrot, The energy equation for the Navier–Stokes system. SIAM J. Math. Anal. 5, 948–954 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  52. C.G. Simader, H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in L q-spaces for bounded and exterior domains, in Advances in Mathematics for Applied Sciences, vol. 11 (World Scientific, Singapore, 1992), pp. 1–35

    MATH  Google Scholar 

  53. H. Sohr, A regularity class for the Navier-Stokes equations in Lorentz spaces. J. Evol. Equ. 1, 441–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. H. Sohr, The Navier–Stokes equations, in An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts (Birkhäuser, Basel, 2001)

    Google Scholar 

  55. V.A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations. J. Sov. Math. 8, 467–529 (1977)

    Article  MATH  Google Scholar 

  56. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (North-Holland, Amsterdam, 1978)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was completed with the support of the International Research Training Group on Mathematical Fluid Mechanics Darmstadt-Tokyo (IRTG 1529).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Farwig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Basel

About this chapter

Cite this chapter

Farwig, R. (2016). Local Regularity Results for the Instationary Navier-Stokes Equations Based on Besov Space Type Criteria. In: Amann, H., Giga, Y., Kozono, H., Okamoto, H., Yamazaki, M. (eds) Recent Developments of Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0939-9_11

Download citation

Publish with us

Policies and ethics