Skip to main content

An Ensemble Machine Learning Approach for Predicting Flood Based on Meteorological and Topographical Features: A Comparative Study in Kalu Ganga River Basin, Sri Lanka

  • Conference paper
  • First Online:
Advances in Intelligent Computing Techniques and Applications (IRICT 2023)

Abstract

Floods are one of the most frequently happening disasters in Sri Lanka that causes severe damage in terms of loss of lives and property damage. Kalu Ganga is one of the river basins, most prone to floods in Sri Lanka. It is stated from studies, that machine learning approaches produce higher accuracy, and can be developed faster and more cost-effective than conventional methods of flood prediction. This study aims to enhance the accuracy of flood prediction in the Kalu Ganga river basins in Sri Lanka using ensemble of methods. The study focuses on six catchment areas such as Kalawana, Ayagama, Kuruwita, Pelmadulla, Elapatha and Kahawatta. The features considered are based on meteorological and topographical aspects. The methodology involves collecting and preprocessing the data followed by feature selection and developing predictive models. The accuracies of the models are evaluated using F1-score. The F1-score, a widely recognized measure of a model's accuracy, balances precision and recall. Specifically, it considers both false positives and false negatives, offering a nuanced evaluation of the model's performance. In the context of flood prediction, where the consequences of both false positives (incorrectly predicting a flood) and false negatives (failure to predict an actual flood) are severe, the F1-score proves to be a relevant and insightful metric. The results show that the Bagging classifier with decision tree as the estimator followed by the use of wrapper method backward feature selection and preprocessing has high F1-score in flood prediction of the Kalu Ganga river basin. This study demonstrates that ensemble of methods can effectively enhance the accuracy of flood prediction in the Kalu Ganga river basin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flooding in Kalu ganga basin Sri Lanka. Slideshare.net (2022). https://www.slideshare.net/pabasarag/flooding-in-kalu-ganga-basin-sri-lanka. Accessed 03 Aug 2022

  2. Data Application of the Month: Machine Learning for Flood Detection | UN-SPIDER Knowledge Portal. Un-spider.org (2022). https://www.un-spider.org/links-and-resources/data-sources/daotm-floods-ml

  3. Ilukkumbure, S., Samarasiri, V., Mohamed, M., Selvaratnam, V., Samantha Rajapaksha, U.: Early warning for pre and post flood risk management by using iot and machine learning. In: 2021 3rd International Conference on Advancements in Computing (ICAC) (2021). https://doi.org/10.1109/icac54203.2021.9671141

  4. Gamage, D., Ilmini, K.: Flood forecasting using artificial neural network for Kalu Ganga. In: Second International Conference, SLAAI-ICAI 2018, Moratuwa, Sri Lanka (2018)

    Google Scholar 

  5. Thilakarathne, H., Premachandra, K.: Predicting floods in North Central Province of Sri Lanka using machine learning and data mining methods. In: International Conference on Artificial Intelligence – 2017, University of Moratuwa, Moratuwa, Sri Lanka (2017)

    Google Scholar 

  6. Nti, I., et al.: Enhancing flood prediction using ensemble and deep learning techniques. In: 2021 22nd International Arab Conference on Information Technology (ACIT) (2021). https://doi.org/10.1109/acit53391.2021.9677084

  7. Abraham, S., Jyothish, V.R., Thomas, S., Jose, B.: Comparative analysis of various machine learning techniques for flood prediction. In: 2022 International Conference on Innovative Trends in Information Technology (ICITIIT) (2022). https://doi.org/10.1109/icitiit54346.2022.9744177

  8. Sharma, T., Pal, A., Kaushik, A., Yadav, A., Chitragupta, A.: A survey on flood prediction analysis based on ml algorithm using data science methodology. In: 2022 IEEE Delhi Section Conference (DELCON) (2022). https://doi.org/10.1109/delcon54057.2022.9753396. Accessed 3 Aug 2022

  9. Mosavi, A., Ozturk, P., Chau, K.: Flood prediction using machine learning models: literature review. Water 10(11), 1536 (2018). https://doi.org/10.3390/w10111536

    Article  Google Scholar 

  10. Lin, W.-C., Tsai, C.-F.: Missing value imputation: a review and analysis of the literature (2006–2017). Artif. Intell. Rev. 52(4), 2283–2320 (2019). https://doi.org/10.1007/s10462-018-09669-0

    Article  Google Scholar 

  11. Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  12. Dismukes, D.E.: Statistical detection of outliers in meteorological data. Mon. Weather Rev. 109(10), 2317–2325 (1981)

    Google Scholar 

  13. Whitten, R.C., Huber, J.A.: Improper use of statistical tests in two recent studies of ozone effects on crops. Atmos. Environ. 22(2), 415–420 (1988)

    Google Scholar 

  14. Tukey, J.: Exploratory Data Analysis. Addison-Wesley Publishing Company, Boston (1977)

    Google Scholar 

  15. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)

    Google Scholar 

  16. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  17. Sun, Y., Wong, A.K., Kamel, M.S.: Classification of imbalanced data: a review. Int. J. Pattern Recognit Artif Intell. 23(4), 687–719 (2009)

    Article  Google Scholar 

  18. Fernández, A., García, S., Herrera, F.: SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary. J. Artif. Intell. Res. 61, 863–905 (2018)

    Article  MathSciNet  Google Scholar 

  19. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  20. Sharma, K., Kumar, R., Kumar, S.: Feature selection techniques for flood prediction: a review. J. Hydrol. 581, 124402 (2020)

    Google Scholar 

  21. Liu, G., Lin, X., Wang, Y.: Feature selection of flood forecasting using hybrid wrapper/embedded method based on extreme learning machine. J. Hydrol. 564, 1007–1018 (2018)

    Google Scholar 

  22. Jin, Y., Li, M., Cai, X.: Comparison of feature selection methods for flood forecasting using support vector regression. J. Hydrol. 527, 1134–1149 (2015)

    Google Scholar 

  23. Li, X., Li, J., Li, S.: A feature selection method for flood prediction based on random forest and mutual information. J. Hydroinf. 22(2), 400–413 (2020)

    Google Scholar 

  24. Haribabu, S., Gupta, G., Kumar, P., Rajendran, P.: Prediction of flood by rainfall using MLP classifier of neural network model. In: 2021 6th International Conference on Communication and Electronics Systems (ICCES) (2021)

    Google Scholar 

  25. Jaafar, K., Ismail, N., Tajjudin, M., Adnan, R., Rahiman, F., Hezri, M.: A review on flood modelling and rainfall-runoff relationships, pp. 158–162 (2015). https://doi.org/10.1109/ICSGRC.2015.7412484

  26. Lawal, Z., Yassin, H., Zakari, R.: Flood prediction using machine learning models: a case study of Kebbi State Nigeria. In: 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE) (2021). https://doi.org/10.1109/csde53843.2021.9718497

  27. Syeed, M., Farzana, M., Namir, I., Ishrar, I., Nushra, M., Rahman, T.: Flood prediction using machine learning models. In: 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) (2022). https://doi.org/10.1109/hora55278.2022.9800023

  28. Manohar, N., Archana, A.U.: Cloud-based flood prediction using IoT devices and machine learning algorithms. In: Proceedings of the Second International Conference on Electronics and Sustainable Communication Systems (ICESC-2021) (2021)

    Google Scholar 

  29. Maspo, N., Bin Harun, A., Goto, M., Cheros, F., Haron, N., Nawi, M.M.: Evaluation of Machine Learning approach in flood prediction scenarios and its input parameters: a systematic review. In: IOP Conference Series: Earth and Environmental Science, vol. 479, no. 1, p. 012038 (2020). https://doi.org/10.1088/1755-1315/479/1/012038

  30. Khalaf, M., et al.: IoT-enabled flood severity prediction via ensemble machine learning models. IEEE Access 8, 70375–70386 (2020). https://doi.org/10.1109/access.2020.2986090

    Article  Google Scholar 

  31. Li, L., Xu, H., Chen, X., Simonovic, S.P.: Streamflow forecast and reservoir operation performance assessment under climate change. Water Res. Manag. 24, 83–104 (2010). https://doi.org/10.1007/s11269-009-9438-x

    Article  Google Scholar 

  32. Wu, C., Chau, K.: Data-driven models for monthly streamflow time series prediction. Eng. Appl. Artif. Intell. 23(8), 1350–1367 (2010). https://doi.org/10.1016/j.engappai.2010.04.003

    Article  Google Scholar 

  33. Deo, R., Şahin, M.: Application of the artificial neural network model for prediction of monthly standardized precipitation and evapotranspiration index using hydrometeorological parameters and climate indices in Eastern Australia. Atmos. Res. 161–162, 65–81 (2015). https://doi.org/10.1016/j.atmosres.2015.03.018

    Article  Google Scholar 

  34. Mitra, P., et al.: Flood forecasting using Internet of things and artificial neural networks. In: 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 1–5 (2016). https://doi.org/10.1109/IEMCON.2016.7746363

  35. Coulibaly, P., Dibike, Y., Anctil, F.: Downscaling precipitation and temperature with temporal neural networks. J. Hydrometeorol. 6(4), 483–496 (2005). https://doi.org/10.1175/jhm409.1

    Article  Google Scholar 

  36. Schoof, J., Pryor, S.: Downscaling temperature and precipitation: a comparison of regression-based methods and artificial neural networks. Int. J. Climatol. 21(7), 773–790 (2001). https://doi.org/10.1002/joc.655

    Article  Google Scholar 

  37. Hassan, Z., Shamsudin, S., Harun, S., Malek, M., Hamidon, N.: Suitability of ANN applied as a hydrological model coupled with statistical downscaling model: a case study in the northern area of Peninsular Malaysia. Environ. Earth Sci. 74(1), 463–477 (2015). https://doi.org/10.1007/s12665-015-4054-y

    Article  Google Scholar 

  38. Riad, S., Mania, J., Bouchaou, L., Najjar, Y.: Rainfall-runoff model usingan artificial neural network approach. Math. Comput. Model. 40(7–8), 839–846 (2004). https://doi.org/10.1016/j.mcm.2004.10.012

    Article  Google Scholar 

  39. Kumar, A.S., Sudheer, K., Jain, S., Agarwal, P.: Rainfall-runoff modelling using artificial neural networks: comparison of network types. Hydrol. Processes 19(6), 1277–1291 (2005). https://doi.org/10.1002/hyp.5581

    Article  Google Scholar 

  40. Suddul, G., Dookhitram, K., Bekaroo, G., Shankhur, N.: An evolutionary multilayer perceptron algorithm for real time river flood prediction. In: 2020 Zooming Innovation in Consumer Technologies Conference (ZINC), pp. 109–112 (2020). https://doi.org/10.1109/ZINC50678.2020.9161824

  41. Han, D., Chan, L., Zhu, N.: Flood forecasting using support vector machines. J. Hydroinf. 9(4), 267–276 (2007). https://doi.org/10.2166/hydro.2007.027

    Article  Google Scholar 

  42. Razali, N., Ismail, S., Mustapha, A.: Machine learning approach for flood risks prediction. IAES Int. J. Artif. Intell. (IJ-AI) 9(1), 73, 2020. https://doi.org/10.11591/ijai.v9.i1.pp73-80

  43. El-Magd, S., Pradhan, B., Alamri, A.: Machine learning algorithm for flash flood prediction mapping in Wadi El-Laqeita and surroundings, Central Eastern Desert, Egypt. Arab. J. Geosci. 14(4), 323 (2021). https://doi.org/10.1007/s12517-021-06466-z

    Article  Google Scholar 

  44. Kinage, C., Kalgutkar, A., Parab, A., Mandora, S., Sahu, S.: Performance evaluation of different machine learning based algorithms for flood prediction and model for real time flood prediction. In: 2019 5th International Conference on Computing, Communication, Control and Automation (ICCUBEA), pp. 1–7 (2019). https://doi.org/10.1109/ICCUBEA47591.2019.9128379

  45. Abbot, J., Marohasy, J.: Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmos. Res. 138, 166–178 (2014). https://doi.org/10.1016/j.atmosres.2013.11.002

    Article  Google Scholar 

  46. Karyotis, C., Maniak, T., Doctor, F., Iqbal, R., Palade, V., Tang, R.: Deep learning for flood forecasting and monitoring in urban environments. In: 2019 18th IEEE International Conference on Machine Learning And Applications (ICMLA) (2019). https://doi.org/10.1109/icmla.2019.00227

  47. Felix, A.Y., Sasipraba, T.: Flood detection using gradient boost machine learning approach. In: 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), pp. 779–783 (2019). https://doi.org/10.1109/ICCIKE47802.2019.9004419

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahrane Mahaganapathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahaganapathy, A., Jayasinghe, D., Rathnayaka, K.T., Wickramaarachchi, W.U. (2024). An Ensemble Machine Learning Approach for Predicting Flood Based on Meteorological and Topographical Features: A Comparative Study in Kalu Ganga River Basin, Sri Lanka. In: Saeed, F., Mohammed, F., Fazea, Y. (eds) Advances in Intelligent Computing Techniques and Applications. IRICT 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-031-59707-7_15

Download citation

Publish with us

Policies and ethics