Skip to main content

Advertisement

Log in

Streamflow Forecast and Reservoir Operation Performance Assessment Under Climate Change

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

This study attempts to investigate potential impacts of future climate change on streamflow and reservoir operation performance in a Northern American Prairie watershed. System Dynamics is employed as an effective methodology to organize and integrate existing information available on climate change scenarios, watershed hydrologic processes, reservoir operation and water resource assessment system. The second version of the Canadian Centre for Climate Modelling and Analysis Coupled Global Climate Model is selected to generate the climate change scenarios with daily climatic data series for hydrologic modeling. Watershed-based hydrologic and reservoir water dynamics modeling focuses on dynamic processes of both streamflow generation driven by climatic conditions, and the reservoir water dynamics based on reservoir operation rules. The reliability measure describes the effectiveness of present reservoir operation rules to meet various demands which are assumed to remain constant for the next 100 years in order to focus the study on the understanding of the structure and the behaviour of the water supply. Simulation results demonstrate that future climate variation and change may bring more high-peak-streamflow occurrences and more abundant water resources. Current reservoir operation rules can provide a high reliability in drought protection and flood control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad S, Simonovic S (2000) System dynamics of reservoir operations for flood management. J Comput Civ Eng 14(3):190–198. doi:10.1061/(ASCE)0887-3801(2000)14:3(190)

    Article  Google Scholar 

  • Akinremi OO, McGinn SM, Cutforth HW (1999) Precipitation trends on the Canadian Prairies. J Clim 12(10):2996–3003. doi:10.1175/1520-0442(1999)012<2996:PTOTCP>2.0.CO;2

    Article  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309. doi:10.1038/nature04141

    Article  Google Scholar 

  • Bobba AG, Lam DC (1990) Hydrological modeling of acidified Canadian watersheds. Ecol Model 50:5–32. doi:10.1016/0304-3800(90)90040-N

    Article  Google Scholar 

  • Burn DH, Simonovic SP (1996) Sensitivity of reservoir operation performance to climatic change. Water Resour Manag 10:463–478. doi:10.1007/BF00422550

    Article  Google Scholar 

  • Cayan DR, Kammerdiener SA, Dettinger MD, Caprio JM, Peterson DH (2001) Changes in the onset of Spring in the Western United States. Bull Am Metab Soc 82:399–415. doi:10.1175/1520-0477(2001)082<0399:CITOOS>2.3.CO;2

    Article  Google Scholar 

  • Douville H, Chauvin F, Planton S, Royer JF, Salas-Mélia D, Tyteca S (2002) Sensitivity of the hydrological cycle in increasing amounts of greenhouse gases and aerosols. Clim Dyn 20:45–68. doi:10.1007/s00382-002-0259-3

    Article  Google Scholar 

  • Ehrman JM, Higuchi K, Clair TA (2000) Backcasting to test the use of neural networks for predicting runoff in Canadian rivers. Can Water Resour J 25(30):279–291

    Article  Google Scholar 

  • Elshorbagy A, Jutla A, Barbour L, Kells J (2005) System dynamics approach to assess the sustainability of reclamation of disturbed watersheds. Can J Civ Eng 32:144–158. doi:10.1139/l04–112

    Article  Google Scholar 

  • Fang X, Pomeroy JW (2008) Drought impacts on Canadian prairie wetland snow hydrology. Hydrol Process 22:2858–2873. doi:10.1002/hyp.7074

    Article  Google Scholar 

  • Flato GM, Boer GJ (2001) Warming asymmetry in climate change simulations. Geophys Res Lett 28:195–198. doi:10.1029/2000GL012121

    Article  Google Scholar 

  • Gutierrez LT, Fey WR (1980) Ecosystem succession: a general hypothesis and test model of a grassland. MIT Press, Cambridge, MA

    Google Scholar 

  • Hashimoto T, Loucks DP, Stedinger JR (1982) Reliability, resiliency and vulnerability criteria for water resource systems. Water Resour Res 18(1):14–20. doi:10.1029/WR018i001p00014

    Article  Google Scholar 

  • High Performance Systems, Inc. (1997) Technical Documentation—STELLA, 255 pp

  • Hsu KL, Gupta HV, Sorooshian S (1995) Artificial neural network modelling of the rainfall-runoff process. Water Resour Bull 25:483–490

    Google Scholar 

  • IPCC (2007) Clim Change 2007. Synthesis report

  • Jakeman AJ, Hornberger GM (1993) How much complexity is warranted in a rainfall-runoff model? Water Resour Res 29:2637–2649. doi:10.1029/93WR00877

    Article  Google Scholar 

  • Kim SJ, Flato G, Boer G, McFarlane N (2002) A coupled climate model simulation of the last glacial maximum. Part 1: transient multi-decadal response. Clim Dyn 19(5–6):515–537. doi:10.1007/s00382-002-0243-y

    Google Scholar 

  • Kite GW, Dalton A, Dion K (1994) Simulation of streamflow in a macroscale watershed using general circulation model data. Water Resour Res 30:1547–1559. doi:10.1029/94WR00231

    Article  Google Scholar 

  • Klemes V (1985) Sensitivity of water resources systems to climate variations. World Climate Problem Report WCP-98. World Meteorological Organization, pp 115

  • Lehning M, Volksch I, Gustafsson D et al (2006) ALPINE3D: a detailed model of mountain surface processes and its application to snow hydrology. Symposium on the Contribution from Glaciers and Snow Cover to Runoff from Mountains in Different Climates, APR 04–09, 2005 Foz do Iguacu, BRAZIL. Hydrol Process 20:2111–2128. doi:10.1002/hyp.6204

    Article  Google Scholar 

  • Li LH, Simonovic SP (2002) System dynamics model for predicting floods from snowmelt in North American Prairie Watersheds. Hydrol Process 16:2645–2666. doi:10.1002/hyp.1064

    Article  Google Scholar 

  • Moore K, Pierson D, Pettersson K et al (2008) Effects of warmer world scenarios on hydrologic inputs to Lake Malaren, Sweden and implications for nutrient loads. Hydrobiologia 599:191–199. doi:10.1007/s10750–007–9197–8

    Article  Google Scholar 

  • Mote PW, Hamlet AF, Clark MP, Lettenmaier DP (2005) Declining mountain snow pack in western North America. Bull Am Metab Soc 86:39–49. doi:10.1175/BAMS-86–1–39

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, et al (2000) Special report on emissions scenarios. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Nijssen B, O’Donnell GM, Hamlet AF, Lettenmaier DP (2001) Hydrologic vulnerability of global rivers to climate change. Clim Change 50:143–175. doi:10.1023/A:1010616428763

    Article  Google Scholar 

  • Salathé EP (2005) Downscaling simulations of future global climate with application to hydrologic modelling. Int J Climatol 25:419–436. doi:10.1002/joc.1125

    Article  Google Scholar 

  • Simonovic SP, Li LH (2003) Methodology for assessment of climate change impacts on large-scale flood protection system. Water Resour Plann Manage, ASCE 129(5):361–372

    Article  Google Scholar 

  • Simonovic SP, Li LH (2004) Sensitivity of the Red River Basin flood protection system to climate variability and change. Water Resour Manag 18:89–110. doi:10.1023/B:WARM.0000024702.40031.b2

    Article  Google Scholar 

  • Smith RE, Veldhuis GF, Mills GF, Eilers RG et al (1998) Terrestrial ecozones, ecoregions, and ecodistricts, an ecological stratification of manitoba’s natural landscapes. Technical Bulletin 98–9E. Land Resource Unit, Brandon Research Centre, Research Branch, Agriculture and Agri-Food Canada, Winnipeg, Manitoba

    Google Scholar 

  • Stewart I, Cayan DC, Dettinger MD (2004) Changes in snowmelt runoff timing in Western North America under a ‘business as usual’ climate change scenario. Clim Change 62:217–232. doi:10.1023/B:CLIM.0000013702.22656.e8

    Article  Google Scholar 

  • Thomas RB, Megahan WF (1998) Peak flow responses to clear-cutting and roads in small and large basins, Western Cascades, Oregon: a second opinion. Water Resour Res 34:3393–3403. doi:10.1029/98WR02500

    Article  Google Scholar 

  • Vicuna S, Dracup JA (2007) The evolution of climate change impact studies on hydrology and water resources in California. Clim Change 82(3–4):327–350. doi:10.1007/s10584-006-9207-2

    Article  Google Scholar 

  • Water Resources Branch (1992) Shellmouth reservoir study: preliminary study of spillway control gates. Manitoba Department of Natural Resources, Canada

    Google Scholar 

  • Water Resources Branch (1995) Assiniboine river flooding & operation of Shellmouth Dam. Report of the Shellmouth Flood Review Committee. Manitoba Department of Natural Resources, Canada

    Google Scholar 

  • Widmann M, Bretherton CS, Salathé EP (2003) Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor. J Clim 16:799–816. doi:10.1175/1520-0442(2003)016<0799:SPDOTN>2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanhai Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Xu, H., Chen, X. et al. Streamflow Forecast and Reservoir Operation Performance Assessment Under Climate Change. Water Resour Manage 24, 83–104 (2010). https://doi.org/10.1007/s11269-009-9438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-009-9438-x

Keywords

Navigation