Skip to main content

Abstract

In biology, theories are constantly enriched and adapted by new examples and scientific advances. In this chapter, we focus on the debate about the rules in biology and their persistence over time as rules accepted by the scientific community. We exemplify this with Darwin’s theory of natural selection, which has been nourished by new disciplines and technologies during the twentieth and twenty-first centuries and has undergone transformations, although it undoubtedly remains the dominant explanation of the evolution of biological systems. Biological rules are dynamic, although they tend to remain relatively stable over time, and their response to the appearance of exceptions can be variable, although the integration of new knowledge into the field is usually gradual until the accumulation of exceptions is so significant that the applicability of the rules is questioned (crisis sensu Kuhnian revolution of scientific knowledge). We illustrate this concept by analyzing the historical evolution of biological species concepts, and we draw attention to the extrapolation of rules originally proposed for certain organisms and applied indiscriminately to other groups without exhaustive testing (e.g., eco-geographic rules).

One never attains the total truth, nor is one ever totally far from it

—Aristotle

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 189.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouheif, E., Favé, M. J., Ibarrarán-Viniegra, A. S., Lesoway, M. P., Rafiqi, A. M., & Rajakumar, R. (2014). Eco-Evo-Devo: The time has come. In C. Landry & N. Aubin-Horth (Eds.), Ecological genomics. Advances in experimental medicine and biology. Springer. pp. 781.

    Google Scholar 

  • Alho, J. S., Herczeg, G., Laugen, A. T., Räsänen, K., Laurila, A., & Merilä, J. (2011). Allen’s rule revisited: Quantitative genetics of extremity length in the common frog along a latitudinal gradient. Journal of Evolutionary Biology, 24, 59–70.

    Article  CAS  PubMed  Google Scholar 

  • Allen, J. A. (1877). The influence of physical conditions in the genesis of species. Radical Review, 1, 108–140.

    Google Scholar 

  • Ashton, K. G., Tracy, M. C., & de Queiroz, A. (2000). Is Bergmann’s rule valid for mammals? The American Naturalist, 156(4), 390–415.

    Article  PubMed  Google Scholar 

  • Atkinson, D. (1994). Temperature and organism size: A biological law for ectotherms? Advances in Ecological Research, 25, 1–58.

    Article  Google Scholar 

  • Blackman, F. F. (1905). Optima and limiting factors. Annals of Botany, 19(74), 281–295.

    Article  Google Scholar 

  • Baker, H. G. (1959). Reproductive methods as factors in speciation in flowering plants. In Cold Spring Harbor Symposia on Quantitative Biology (pp. 177–191). Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Banta, J. A., & Richards, C. L. (2018). Quantitative epigenetics and evolution. Heredity, 121, 210–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateman, A. J. (1948). Intrasexual selection in Drosophila. Heredity, 2(3), 349–368.

    Article  CAS  PubMed  Google Scholar 

  • Bateson, W. (1902). Mendel's principles of heredity: A defence. University Press.

    Book  Google Scholar 

  • Bateson, G. (1971). A re-examination of “Bateson’s Rule”. Journal of Genetics, 60, 230–240.

    Article  Google Scholar 

  • Bergmann, C. (1847). Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien, 3, 595–708.

    Google Scholar 

  • Bernard, C. (1865). Introduction à l’étude de la médecine expérimentale. Baillière.

    Google Scholar 

  • Biddick, M., Hendriks, A., & Burns, K. C. (2019). Plants obey (and disobey) the island rule. Proceedings of the National Academy of Sciences, 116(47), 201907424.

    Google Scholar 

  • Cabej, N. (2018). Epigenetic principles of evolution. Academic Press.

    Google Scholar 

  • Carroll, S. B. (2008). Evo-Devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell, 13(1), 25–36.

    Article  Google Scholar 

  • Case, T. J. (1978). A general explanation for insular body size trends in terrestrial vertebrates. Ecology, 59(1), 1–18.

    Article  Google Scholar 

  • Caso, J. M. R. (2020). El “darwinismo puro” de Alfred Russel Wallace: Aportaciones a la teoría evolutiva moderna. Asclepio, 72(2), 324.

    Article  Google Scholar 

  • Clarke, E., & Okasha, S. (2013). Species and organisms: What are the problems? In P. Huneman & F. Bouchard (Eds.), From groups to individuals. Evolution and emerging individuality. pp. 55.

    Google Scholar 

  • Clauss, M., Dittmann, M. T., Müller, D. W. H., Meloro, C., & Crodon, D. (2013). Bergmann’s rule in mammals: A cross-species interspecific pattern. Oikos, 122(10), 1465–1472.

    Article  Google Scholar 

  • Cody, M. L., & Diamond, J. M. (1975). Ecology and evolution of communities. Belknap Press, Harvard University Press.

    Google Scholar 

  • Cope, E. D. (1887). The origin of the fittest: Essays on evolution. D. Appleton.

    Book  Google Scholar 

  • Crick, F. H. C. (1958). On protein synthesis. In Symposia of the Society for Experimental Biology; Number XII: The Biological Replication of Macromolecules (pp. 138–163). Cambridge University Press.

    Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray.

    Book  Google Scholar 

  • Dale, H. (1935). Pharmacology and nerve-endings. Proceedings of the Royal Society of Medicine, 28, 319–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawkins, R. (1976). The selfish gene. Oxford University Press.

    Google Scholar 

  • de Queiroz, K. (1998). The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. In Endless forms: Species and speciation (pp. 57–75). Oxford University Press.

    Google Scholar 

  • de Queiroz, K. (2005). Ernst Mayr and the modern concept of species. Proceedings of the National Academy of Sciences, 102, 6600–6607.

    Article  Google Scholar 

  • de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56(6), 879–886.

    Article  PubMed  Google Scholar 

  • Delhey, K. (2019). A review of Gloger’s rule, an ecogeographical rule of colour: Definitions, interpretations and evidence. Biological Reviews, 94, 1294–1316.

    Article  PubMed  Google Scholar 

  • Depéret, C. (1907). Les Transformations du monde animal. Ernest Flammarion.

    Google Scholar 

  • Dillard, J. R., & Westneat, D. F. (2016). Disentangling the correlated evolution of monogamy and cooperation. Trends in Ecology & Evolution, 31(7), 503–513.

    Article  Google Scholar 

  • Dobzhansky, T. (1937). Genetics and the origin of species. Columbia University Press.

    Google Scholar 

  • Dollo, L. (1893). Les lois de l’évolution. Bulletin de la Société Belge de Géologie de Paléontologie & D’hydrologie, VII: 164–166.

    Google Scholar 

  • Donati, D., Bianchi, C., Pezzi, G., Conte, L., Hofer, A., & Chiarucci, A. (2016). Biogeography and ecology of the genus Turbinicarpus (Cactaceae): Environmental controls of taxa richness and morphology. Systematics and Biodiversity, 15(4), 361–371.

    Article  Google Scholar 

  • Drezner, T. D. (2003). Revisiting Bergmann’s rule for saguaros (Carnegiea gigantea (Engelm.) Britt. and Rose): Stem diameter patterns over space. Journal of Biogeography, 30(3), 353–359.

    Article  Google Scholar 

  • Eichler, W. D. (1942). Die Entfaltungsregel und andere Gesetzmäßigkeiten in den parasitogenetischen Beziehungen der Mallophagen und anderer ständiger Parasiten zu ihren Wirten. Zoologischer Anzeiger, 137, 77–83.

    Google Scholar 

  • Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: an alternative to phyletic gradualism. Models in Paleobiology, 82, 115.

    Google Scholar 

  • Emery, C. (1909). Über den Ursprung der dulotischen, parasitischen und myrmekophilen Ameisen. Biologisches Centralblatt, 29, 352–362.

    Google Scholar 

  • Fábregas-Tejeda, A., & Vergara-Silva, F. (2018). The emerging structure of the extended evolutionary synthesis: Where does Evo-Devo fit in? Theory in Biosciences, 137(2), 169–184.

    Article  PubMed  Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. Clarendon Press.

    Book  Google Scholar 

  • Foster, J. B. (1964). The evolution of mammals on islands. Nature, 202(4929), 234–235.

    Article  Google Scholar 

  • Franklin, R. E., & Gosling, R. G. (1953). Molecular configuration in sodium thymonucleate. Nature, 171, 740–741.

    Article  CAS  PubMed  Google Scholar 

  • Galton, F. (1889). Natural Inheritance. Macmillan & Co.

    Book  Google Scholar 

  • Gause, G. F. (1934). The Struggle for Existence. Williams & Wilkins.

    Book  Google Scholar 

  • Gayon, J. (2016). From Mendel to epigenetics: History of genetics. Comptes Rendus Biologies, 339(7–8), 225–230.

    Article  PubMed  Google Scholar 

  • Geist, V. (1987). Bergmann’s rule is invalid. Canadian Journal of Zoology, 65(4), 1035–1038.

    Article  Google Scholar 

  • George, A. L., & Mayden, R. L. (2005). Species concepts and the endangered species act: How a valid biological definition of species enhances the legal protection of biodiversity. Natural Resources Journal, 45(2), 369–407.

    Google Scholar 

  • Gloger, C. W. L. (1833). Abänderungsweise der einzelnen, einer Veränderung durch das Klima unterworfenen Farben. Das Abändern der Vögel durch Einfluss des Klimas. August Schulz.

    Book  Google Scholar 

  • Gould, S. J. (1990). Wonderful life: The burgess shale and the nature of history. W. W. Norton & Company.

    Google Scholar 

  • Grinnell, J. (1904). The origin and distribution of the chest-nut-backed chickadee. The Auk, 21(3), 364–382.

    Article  Google Scholar 

  • Haeckel, E. (1868). Natürliche Schöpfungsgeschichte. Georg Reimer.

    Google Scholar 

  • Haldane, J. B. (1922). Sex ratio and unisexual sterility in hybrid animals. Journal of Genetics, 12, 101–109.

    Article  Google Scholar 

  • Haldane, J. B. S. (1932). The Causes of Evolution. Longman, Green and Co. Princeton University Press.

    Google Scholar 

  • Hall, B. (2003). Evo-Devo: Evolutionary developmental mechanisms. International Journal of Developmental Biology, 47, 491–495.

    PubMed  Google Scholar 

  • Hamilton, W. D. (1964). The genetical evolution of social behaviour II. Journal of theoretical biology, 7(1), 17–52.

    Article  CAS  PubMed  Google Scholar 

  • Hardy, G. H. (1908). Mendelian proportions in a mixed population. Science, 28(706), 49–50.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, L. (1915). Mallophaga from Apteryx, and their significance; with a note on the genus Rallicola. Parasitology, 8(1), 88–100.

    Article  Google Scholar 

  • Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology. Oxford: university press.

    Google Scholar 

  • Hebb, D. O. (1949). The Organization of Behavior. Wiley & Sons.

    Google Scholar 

  • Hennig, W. (1950). Grundzüge einer Theorie der phylogenetischen Systematik. Deutscher Zentralverlag.

    Google Scholar 

  • Hennig, W. (1966). The Diptera fauna of New Zealand as a problem in systematics and zoogeography. Pacific Insects Monograph, 9, 81.

    Google Scholar 

  • Hertwig, O. (1884). Das Problem der Befruchtung und der Isotropie des Eies, eine Theory der Vererbung. Jenaische Zeitschrift fuer Naturwissenschaft, 18, 21–23.

    Google Scholar 

  • Hesse, R., Allee, W. C., & Schmidt, K. P. (1937). Ecological animal geography. Wiley.

    Google Scholar 

  • Hone, D. W., & Benton, M. J. (2005). The evolution of large size: How does Cope’s Rule work? Trends in Ecology & Evolution, 20, 4–6.

    Article  Google Scholar 

  • Hone, D. W. E., Dyke, G. J., Haden, M., & Benton, M. J. (2008). Body size evolution in Mesozoic birds. Journal of Evolutionary Biology, 21(2), 618–624.

    Article  CAS  PubMed  Google Scholar 

  • Huang, M. H., & Dornhaus, A. (2008). A meta-analysis of ant social parasitism: Host characteristics of different parasitism types and a test of Emery’s rule. Ecological Entomology, 33(5), 589–596.

    Article  Google Scholar 

  • Huxley, J. S., & Teissier, G. (1936). Terminology of relative growth. Nature, 137(3471), 780–781.

    Article  Google Scholar 

  • Jablonka, E. (2017). The evolutionary implications of epigenetic inheritance. Interface Focus, 7, 20160135.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jablonka, E., & Lamb, M. J. (2014). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. The MIT Press.

    Book  Google Scholar 

  • Janzen, D. H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101(919), 233–249.

    Article  Google Scholar 

  • Jordan, D. S. (1892). Relations of temperature to vertebrae among fishes. Proceedings of the United States National Museum, 1891, 107–120.

    Google Scholar 

  • Jordan, D. S. (1922). Two volumes. In The days of a man: Being memories of a naturalist, teacher and minor prophet of democracy. World Book Company.

    Google Scholar 

  • Jørgensen, S. E. (2002). Explanation of ecological rules and observation by application of ecosystem theory and ecological models. Ecological Modelling, 158, 241–248.

    Article  Google Scholar 

  • Kavanagh, P. H., Lehnebach, C. A., Shea, M. J., & Burns, K. C. (2011). Allometry of sexual size dimorphism in dioecious plants: Do plants obey Rensch’s rule? The American Naturalist, 178(5), 596–601.

    Article  CAS  PubMed  Google Scholar 

  • Kimbel, W. H., & Martin, L. B. (Eds.). (1993). Species, species concepts and primate evolution. Springer.

    Google Scholar 

  • Kleiber, M. (1932). Body size and metabolism. Hilgardia, 6, 315–353.

    Article  CAS  Google Scholar 

  • Lack, D. (1954). The natural regulation of animal numbers. Clarendon.

    Google Scholar 

  • Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., Jablonka, E., & Odling-Smee, J. (2015). The extended evolutionary synthesis: Its structure, assumptions and predictions. Proceedings of the Royal Society B, 282(1813), 20151019.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamarck, J. B. (1809). Philosophie zoologique. New York: Hafner Publishing Company, 1963.

    Google Scholar 

  • Lee, M. S. Y. (2003). Species concepts and species reality: Salvaging a Linnaean rank. Journal of Evolutionary Biology, 16, 179–188.

    Article  CAS  PubMed  Google Scholar 

  • Lev-Yadun, S. (2016). Defensive (anti-herbivory) coloration in land plants. Springer International Publishing.

    Book  Google Scholar 

  • Lewis, F. T. (1928). The correlation between cell division and the shapes and sizes of prismatic cells in the epidermis of cucumis. The Anatomical Record, 38(3), 341–376.

    Article  Google Scholar 

  • Lewontin, R. C., & Levins, R. (2000). Schmalhausen’s law. Capitalism Nature Socialism, 11, 103–108.

    Article  Google Scholar 

  • Liebig, J. V. (1840). Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie (Organic chemistry in its applications to agriculture and physiology). Friedrich Vieweg und Sohn Publishing Company.

    Google Scholar 

  • Lind, M. I., & Spagopoulou, F. (2018). Evolutionary consequences of epigenetic inheritance. Heredity, 121, 205–209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Ecology, 23(4), 399–417.

    Article  Google Scholar 

  • Liò, P., & Goldman, N. (1998). Models of molecular evolution and phylogeny. Genome Research, 8, 1233–1244.

    Article  PubMed  Google Scholar 

  • Lopez-Osorio, F., Perrard, A., Pickett, K. M., Carpenter, J. M., & Agnarsson, I. (2015). Phylogenetic tests reject Emery’s rule in the evolution of social parasitism in yellowjackets and hornets (Hymenoptera: Vespidae, Vespinae). Royal Society Open Science, 2, 150159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovelock, J. E. (1972). Gaia as seen through the atmosphere. Atmospheric Environment, 6(8):580, 5–90076.

    Google Scholar 

  • Macarthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Princeton Univ. Press.

    Google Scholar 

  • Mallet, J. (2007). Species, concepts of. In S. Levin et al. (Eds.), Encyclopedia of biodiversity (pp. 427–440). Elsevier.

    Google Scholar 

  • Mateo, R. G., Mokany, K., & Guisan, A. (2017). Biodiversity models: What if unsaturation is the rule? Trends in Ecology & Evolution, 32(8), 556–566.

    Article  Google Scholar 

  • Maynard-Smith, J. M., & Price, G. R. (1973). The logic of animal conflict. Nature, 246(5427), 15–18.

    Article  Google Scholar 

  • Mayr, E. (1942). Systematics and the origin of species. Columbia University Press.

    Google Scholar 

  • Mayr, E. (1970). Populations, species, and evolution; an abridgment of animal species and evolution. Belknap Press of Harvard University Press.

    Google Scholar 

  • Mendel, G. (1866). Versuche über Planzenhybriden, Verhandlungen des naturforschenden Vereines in Brünn, Bd. für das Jahr 1865, Abhandlungen (pp. 3–47).

    Google Scholar 

  • Mileikovsky, S. A. (1971). Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a re-evaluation. Marine Biology, 10, 193–213.

    Article  Google Scholar 

  • Moles, A. T., Warton, D. I., Warman, L., Swenson, N. G., Laffan, S. W., Zanne, A. E., Pitman, A., Hemmings, F. A., & Leishman, M. R. (2009). Global patterns in plant height. Journal of Ecology, 97(5), 923–932.

    Article  Google Scholar 

  • Morgan, T. H. (1926). The theory of the gene. Yale University Press.

    Book  Google Scholar 

  • Morgan, T. H., Sturtevant, A. H., Muller, H. J., & Bridges, C. B. (1915). The mechanism of Mendelian heredity. H. Holt & Co..

    Book  Google Scholar 

  • Moseley, H. N. (1880). Deep-sea dredging and life in the deep sea. Nature, 21, 591–593.

    Article  Google Scholar 

  • Mousseau, T. A. (1997). Ectotherms follow the converse to Bergmann’s rule. Evolution, 630–632.

    Google Scholar 

  • Müller, J. (1838). Handbook of human physiology (Vol. 1). J. Hölscher.

    Google Scholar 

  • Müller, G. B. (2007). Evo-devo: Extending the evolutionary synthesis. Nature Reviews Genetics, 8, 943–949.

    Article  PubMed  Google Scholar 

  • Müller, G. B. (2017). Why an extended evolutionary synthesis is necessary. Interface focus, 7(5), 20170015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mungee, M., Pandit, R., & Athreya, R. (2021). Taxonomic scale dependency of Bergmann’s patterns: a cross-scale comparison of hawkmoths and birds along a tropical elevational gradient. Journal of Tropical Ecology, 37(6), 302–312.

    Article  Google Scholar 

  • Nature Education. (2014). Species. Retrieved from https://www.nature.com/scitable/definition/species-312/

  • Ohno, S. (1967). Sex Chromosomes and Sex-linked Genes. Springer.

    Book  Google Scholar 

  • Olalla-Tárraga, M. A. (2011). “Nullius in Bergmann” or the pluralistic approach to ecogeographical rules: A reply to Watt et al. Oikos, 120, 1441–1444.

    Article  Google Scholar 

  • Pigliucci, M. (2007). Do we need an extended evolutionary synthesis? Evolution, 61(12), 2743–2749.

    Article  PubMed  Google Scholar 

  • Pigliucci, M., & Finkelman, L. (2014). The extended (evolutionary) synthesis debate: Where science meets philosophy. BioScience, 64(6), 511–516.

    Article  Google Scholar 

  • Pigliucci, M., & Müller, G. B. (2010). Evolution, the extended synthesis. The MIT Press.

    Book  Google Scholar 

  • Pincheira-Donoso, D. (2010). The balance between predictions and evidence and the search for universal macroecological patterns: Taking Bergmann’s rule back to its endothermic origin. Theory in Biosciences, 129(4), 247–253.

    Article  PubMed  Google Scholar 

  • Popper, K. R. (1980). Selección natural y la emergencia de la mente. Teorema: Revista Internacional de Filosofía, 10(2/3), 191–213.

    Google Scholar 

  • Popper, K. R. (1991). Conjeturas y refutaciones: El desarrollo del conocimiento científico. Paidós Ibérica.

    Google Scholar 

  • Portin, P., & Wilkins, A. (2017). The evolving definition of the term “Gene”. Genetics, 205(4), 1353–1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queller, D. C., & Strassman, J. E. (2002). Quick guide: Kin selection. Current Biology, 12(24), R832.

    Article  CAS  PubMed  Google Scholar 

  • Raia, P., & Fortelius, M. (2013). Cope’s law of the unspecialized, Cope’s rule, and weak directionality in evolution. Evolutionary Ecology Research, 15(7), 747–756.

    Google Scholar 

  • Rendón, C. A., & Folguera, G. (2014). Evo-devo como disciplina integradora: La temporalidad de los procesos biológicos como estrategia de análisis. Theoria, 81, 395–415.

    Article  Google Scholar 

  • Rensch, B. (1929). Das Prinzip geographischer Rassenkreise und das Problem der Artbildung. Gebrueder Borntraeger.

    Google Scholar 

  • Rensch, B. (1948). Histological changes correlated with evolutionary changes of body size. Evolution, 2(3), 218–230.

    Article  CAS  PubMed  Google Scholar 

  • Rensch, B. (1950). Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse. Bonner Zoologische Beiträge, 1, 58–69.

    Google Scholar 

  • Ruíz, R., & Ayala, F. J. (1998). El método en las ciencias. Epistemología y darwinismo. Fondo de Cultura Económica de España (Colección Ciencia y Tecnología).

    Google Scholar 

  • Sagan, L. (1967). On the origin of mitosing cells. Journal of Theoretical Biology, 14(3), 225-IN6.

    Article  Google Scholar 

  • Salewski, V., & Watt, C. (2017). Bergmann’s rule: A biophysiological rule examined in birds. Oikos, 126, 161–172.

    Article  Google Scholar 

  • Sargis, E. J., Millien, V., Woodman, N., & Olson, L. E. (2018). Rule reversal: Ecogeographical patterns of body size variation in the common treeshrew (Mammalia, Scandentia). Ecology and Evolution, 8(3), 1634–1645.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarrus, F., & Rameaux, J. F. (1839). Application des sciences accessoires et principalement des mathématiques à la physiologie générale. Bulletin de l’Academie Royale de Medecine de Belgique, 3, 1094-1100.

    Google Scholar 

  • Schleiden, M. J. (1838). Beiträge zur Phytogenesis. Archiv für Anatomie, Physiologie und wissenschaftliche Medicin, 1, 137–176.

    Google Scholar 

  • Serrat, M. A., King, D., & Lovejoy, C. O. (2008). Temperature regulates limb length in homeotherms by directly modulating cartilage growth. Proceedings of the National Academy of Sciences, 105(49), 19348–19353.

    Article  CAS  Google Scholar 

  • Serres, E. R. A. (1827). Anatomie comparée du cerveau, dans les quatres classes des animaux vertébrés: appliquée à la physiologie et à la pathologie du système nerveux.

    Google Scholar 

  • Shelford, V. E. (1911). Physiological animal geography. Journal of Morphology, 22(3), 551–618.

    Article  Google Scholar 

  • Shelomi, M. (2012). Where are we now? Bergmann’s rule sensu lato in insects. The American Naturalist, 180(4), 511–519.

    Article  PubMed  Google Scholar 

  • Simpson, G. G. (1944). Tempo and mode in evolution. Columbia University Press.

    Google Scholar 

  • Smith, W. (1816). Strata identified by organized fossils: containing prints on colored paper of the most characteristic specimens in each stratum. W. Arding.

    Google Scholar 

  • Stebbins, C. L. (1950). Variation and evolution in plants. Oxford University Press.

    Book  Google Scholar 

  • Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D., Reich, P. B., et al. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569(7756), 404–408.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, G. C. (1989). The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist, 133(2), 240–256.

    Article  Google Scholar 

  • Templeton, A. R. (1989). The meaning of species and speciation: A genetic perspective. In Speciation and its consequences (pp. 3–27). Sinauer Associates.

    Google Scholar 

  • Templeton, A. R. (1998). Species and speciation: Geography, population structure, ecology, and gene trees. In Endless forms: Species and speciation (pp. 32–43). Oxford University Press.

    Google Scholar 

  • Thompson, D., Regev, A., & Roy, S. (2015). Comparative analysis of gene regulatory networks: From network reconstruction to evolution. Annual Review of Cell and Developmental Biology, 31, 6.1–6.30.

    Article  Google Scholar 

  • University of California, Berkeley. (2023). Defining a species. Understanding evolution. Retrieved from https://evolution.berkeley.edu/evolution-101/speciation/defining-a-species/

  • Van Valen, L. (1973). A new evolutionary law. Evolution Theory, 1, 1–30.

    Google Scholar 

  • Vinarskiĭ, M. V. (2014). On the application of Bergmann’s rule to ectothermic organisms: The state of the art. Biology Bulletin Reviews, 4(3), 232–242.

    Article  Google Scholar 

  • Von Baer, K. E. (1828). Über Entwickelungsgeschichte der Thiere. Beobachtung und Reflexion.

    Book  Google Scholar 

  • Waples, R. S. (1991). Pacific Salmon, Oncorhynchus spp., and the definition of “Species” Under the Endangered Species Act. Marine Fisheries Review, 53(3), 11–22.

    Google Scholar 

  • Watson, J. D., & Crick, F. H. (1953). A structure for deoxyribose nucleic acid. Nature, 171, 737–738.

    Article  CAS  PubMed  Google Scholar 

  • West-Eberhard, M. J. (1989). Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics, 20(1), 249–278.

    Article  Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.

    Book  Google Scholar 

  • West-Eberhard, M. J. (2005). Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences, 102(1), 6543–6549.

    Article  CAS  Google Scholar 

  • Wheeler, Q. D., & Meier, R. (2000). Species concepts and phylogenetic theory: A debate. Columbia University Press.

    Google Scholar 

  • Whelan, S., Liò, P., & Goldman, N. (2001). Molecular phylogenetics: State-of-the-art methods for looking into the past. Trends in Genetics, 17(5), 262–272.

    Article  CAS  PubMed  Google Scholar 

  • Wilkins, M. H. F., Stokes, A. R., & Wilson, H. R. (1953). Molecular structure of deoxypentose nucleic acids. Nature, 171, 738–740.

    Article  CAS  PubMed  Google Scholar 

  • Williston, S. W. (1914). Water reptiles of the past and present. University of Chicago Press.

    Book  Google Scholar 

  • Woese, C. R., & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences, 74(11), 5088–5090.

    Article  CAS  Google Scholar 

  • Wright, S. G. (1931). Evolution in Mendelian populations. Genetics, 16, 97–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. G. (1932). The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proceedings of the Sixth International Congress of Genetics, 356–366.

    Google Scholar 

  • Yoda, K., Kira, T., Ogawa, H., & Hozumi, K. (1963). Intraspecific competition among higher plants. XI. Self-thinning in overcrowded pure stands under cultivated and natural conditions. Journal Biology Osaka City University, 14, 107–129.

    Google Scholar 

  • Zachos, F. E. (2016). Species concepts in biology: Historical development, theoretical foundations and practical relevance. Springer.

    Book  Google Scholar 

  • Zahavi, A. (1975). Mate selection: a selection for a handicap. Journal of Theoretical Biology, 53, 205–214.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo V. Peretti .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peretti, A.V., Calbacho-Rosa, L.S., Olivero, P.A., Oviedo-Diego, M.A., Vrech, D.E. (2024). When THAT Rule Almost Persists as THAT Rule. In: Rules and Exceptions in Biology: from Fundamental Concepts to Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-55382-0_4

Download citation

Publish with us

Policies and ethics