Skip to main content

The Use of Nanofertilizers as Micronutrients to Improve Marginal Soils and Crop Production

  • Chapter
  • First Online:
The Marginal Soils of Africa
  • 29 Accesses

Abstract

The quality of agricultural soils contributes to the amount of food produced globally for the entire world’s population. However, there are several environmental restrictions that often result in reduced agricultural output. The constraints include abiotic and biotic stresses and can affect both agricultural and marginal soils. Keeping in mind that crops require different nutrients for development, nanofertilizers (or nanonutrients) have emerged as potential tools for agricultural sustainability, particularly for the marginal environments that experience both biotic and abiotic challenges. Nanofertilizers have the potential to significantly increase plant production, both qualitatively and quantitatively. Due to their minute size, these fertilizers are the ideal solution to overcome the environmental and health issues that traditional fertilizers may cause because they are more easily absorbed by the plant through targeted distribution and are less likely to leach into the environment. Caution should however be placed on the effect these nanofertilizers, as known antibacterial agents, can have on soil ecosystems. Therefore, this chapter elucidates the role of nanofertilizers as micronutrients for crop production under stressed conditions that might be experienced on marginal lands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abid N, Khan AM, Shujait S, Chaudhary K, Ikram M, Imran M et al (2022) Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv Colloid Interface Sci 300:102597

    Article  CAS  Google Scholar 

  • Adhikari T, Ramana S (2019) Nano fertilizer: its impact on crop growth and soil health. J Res Pjtsau 47:1–70

    Google Scholar 

  • Adhikari T, Biswas AK, Kundu S (2010) Nano-fertilizer a new dimension in agriculture. Indian J Fertil 6(1):22–24

    Google Scholar 

  • Afshari M, Pazoki A, Sadeghipour O (2021) Foliar-applied silicon and its nanoparticles stimulate physio-chemical changes to improve growth, yield and active constituents of coriander (Coriandrum Sativum L.) Essential oil under different irrigation regimes. Silicon:1–12

    Google Scholar 

  • Alejandro S, Höller S, Meier B, Peiter E (2020) Manganese in plants: from acquisition to subcellular allocation. Front Plant Sci 11:300

    Article  Google Scholar 

  • Amira SS, Souad AEF, Essam D (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7(2):36–47

    Article  Google Scholar 

  • Astaneh N, Bazrafshan F, Zare M, Amiri B, Bahrani A (2021) Nano-fertilizer prevents environmental pollution and improves physiological traits of wheat grown under drought stress conditions. Scientia Agropecuaria 12(1):41–47

    Article  CAS  Google Scholar 

  • Avila-Quezada G, Ingle A, Golińska P, Rai M (2022) Strategic applications of nano-fertilizers for sustainable agriculture: benefits and bottlenecks. Nanotechnol Rev 11(1):2123–2140. https://doi.org/10.1515/ntrev-2022-0126

    Article  CAS  Google Scholar 

  • Azam M, Bhatti HN, Khan A, Zafar L, Iqbal M (2022) Zinc oxide nano-fertilizer application (foliar and soil) effect on the growth, photosynthetic pigments and antioxidant system of maize cultivar. Biocatal Agric Biotechnol 42:102343

    Article  CAS  Google Scholar 

  • Babu S, Singh R, Yadav D, Rathore SS, Raj R, Avasthe R, Yadav SK et al (2022) Nanofertilizers for agricultural and environmental sustainability. Chemosphere 292:133451

    Article  CAS  Google Scholar 

  • Basavegowda N, Baek KH (2021) Current and future perspectives on the use of nanofertilizers for sustainable agriculture: the case of phosphorus nanofertilizer. 3 Biotech 11(7):357

    Article  Google Scholar 

  • Brdar-Jokanović M (2020) Boron toxicity and deficiency in agricultural plants. Int J Mol Sci 21(4):1424

    Article  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702

    Article  CAS  Google Scholar 

  • Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012) Function of nutrients: micronutrients. In: Marschner’s mineral nutrition of higher plants. Academic Press, pp 191–248

    Chapter  Google Scholar 

  • Camacho-Cristóbal JJ, Rexach J, Herrera-Rodríguez MB, Navarro-Gochicoa MT, González-Fontes A (2011) Boron deficiency and transcript level changes. Plant Sci 181(2):85–89

    Article  Google Scholar 

  • Castillo-González J, Ojeda-Barrios D, Hernández-Rodríguez A, González-Franco AC, Robles-Hernández L, López-Ochoa GR (2018) Zinc metalloenzymes in plants. Interciencia 43(4):242–248

    Google Scholar 

  • Chen S, Yang M, Ba C, Yu S, Jiang Y, Zou H, Zhang Y (2018) Preparation and characterization of slow-release fertilizer encapsulated by biochar-based waterborne copolymers. Sci Total Environ 615:431–437

    Article  CAS  Google Scholar 

  • Coo JL, So ZP, Ng CW (2016) Effect of nanoparticles on the shrinkage properties of clay. Eng Geol 213:84–88

    Article  Google Scholar 

  • Das P, Gogoi N, Sarkar S, Patil SA, Hussain N, Barman S et al (2021) Nano-based soil conditioners eradicate micronutrient deficiency: soil physicochemical properties and plant molecular responses. Environ Sci: Nano 8(10):2824–2843. https://doi.org/10.1039/D1EN00551K

    Article  CAS  Google Scholar 

  • Dola DB, Mannan MA, Sarker U, Al Mamun MA, Islam T, Ercisli S, Saleem MH, Ali B, Pop OL, Marc RA (2022) Nano-iron oxide accelerates growth, yield, and quality of Glycine max seed in water deficits. Front Plant Sci 13

    Google Scholar 

  • El-Saadony MT, Saad AM, Soliman SM, Salem HM, Desoky ESM, Babalghith AO, El-Tahan AM, Ibrahim OM, Ebrahim AA, Abd El-Mageed TA, Elrys AS (2022) Role of nanoparticles in enhancing crop tolerance to abiotic stress: a comprehensive review. Front Plant Sci 13

    Google Scholar 

  • Escudero-Almanza DJ, Ojeda-Barrios DL, Hernández-Rodríguez OA, Sánchez Chávez E, Ruíz-Anchondo T, Sida-Arreola JP (2012) Carbonic anhydrase and zinc in plant physiology. Chil J Agric Res 72(1):140–146

    Article  Google Scholar 

  • Fageria NK (2016) The use of nutrients in crop plants. CRC Press

    Book  Google Scholar 

  • Fauzi A, Rahman WMNWA, Jauhari Z (2013) Utilization waste material as stabilizer on Kuantan clayey soil stabilization. Procedia Eng 53:42–47

    Article  CAS  Google Scholar 

  • Fischer K, Barbier GG, Hecht HJ, Mendel RR, Campbell WH, Schwarz G (2005) Structural basis of eukaryotic nitrate reduction: crystal structures of the nitrate reductase active site. Plant Cell 17(4):1167–1179

    Article  CAS  Google Scholar 

  • Fraceto LF, Renato G, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4

    Google Scholar 

  • Frey PA, Reed GH (2012) The ubiquity of iron. ACS Chem Biol 7(9):1477–1482

    Article  CAS  Google Scholar 

  • Gong X, Qu C, Liu C, Hong M, Wang L, Hong F (2011) Effects of manganese deficiency and added cerium on nitrogen metabolism of maize. Biol Trace Elem Res 144(1):1240–1250

    Article  CAS  Google Scholar 

  • González-Fontes A, Rexach J, Navarro-Gochicoa MT, Herrera-Rodríguez MB, Beato VM, Maldonado JM, Camacho-Cristóbal JJ (2008) Is boron involved solely in structural roles in vascular plants? Plant Signal Behav 3(1):24–26

    Article  Google Scholar 

  • Graham-Rowe D (2011) Agriculture: beyond food versus fuel. Nature 474(7352):S6–S8

    Article  CAS  Google Scholar 

  • Hassan NS, Salah El Din TA, Hendawey MH, Borai IH, Mahdi AA (2018) Magnetite and zinc oxide nanoparticles alleviated heat stress in wheat plants. Curr Nanomater 3(1):32–43

    Article  CAS  Google Scholar 

  • Iavicoli I, Leso V, Beezhold DH, Shvedova AA (2017) Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol 329:96–111

    Article  CAS  Google Scholar 

  • Ikhmayies SJ (2014) Characterization of nanomaterials. JOM 66:28–29. https://doi.org/10.1007/s11837-013-0826-6

    Article  Google Scholar 

  • Irshad MA, Nawaz R, ur Rehman MZ, Imran M, Ahmad J, Ahmad S et al (2020) Synthesis and characterization of titanium dioxide nanoparticles by chemical and green methods and their antifungal activities against wheat rust. Chemosphere 258:127352

    Article  CAS  Google Scholar 

  • Ishii T, Matsunaga T, Hayashi N (2001) Formation of rhamnogalacturonan II-borate dimer in pectin determines cell wall thickness of pumpkin tissue. Plant Physiol 126(4):1698–1705

    Article  CAS  Google Scholar 

  • Ishka MR, Chia JC, Vatamaniuk OK (2022) Advances in understanding of copper function and transport in plants. In: Cation transporters in plants, pp 205–226

    Google Scholar 

  • Jatav HS, Sharma LD, Sadhukhan R, Singh SK, Singh S, Rajput VD, Parihar M, Jatav SS, Jinger D, Kumar S (2020) An overview of micronutrients: prospects and implication in crop production. In: Plant micronutrients: deficiency and toxicity management, pp 1–30

    Google Scholar 

  • Javed Z, Tripathi GD, Gattupalli M, Dashora K (2023) Toxicological impacts of nanomaterials on the agricultural soil and enzymes associated with complex sugar degradation. In: Nanotechnology in agriculture and agroecosystems. Elsevier, pp 407–421

    Chapter  Google Scholar 

  • Jeelani PG, Mulay P, Venkat R, Ramalingam C (2020) Multifaceted application of silica nanoparticles. A review. Silicon 12:1337–1354

    Article  CAS  Google Scholar 

  • Kaliva M, Vamvakaki M (2020) Chapter 17 - nanomaterials characterization. In: Polymer science and nanotechnology. Elsevier, pp 401–433. https://doi.org/10.1016/B978-0-12-816806-6.00017-0. ISBN 9780128168066

    Chapter  Google Scholar 

  • Kalwani M, Chakdar H, Srivastava A, Pabbi S, Shukla P (2022) Effects of nanofertilizers on soil and plant-associated microbial communities: emerging trends and perspectives. Chemosphere 287(Pt 2):132107

    Article  CAS  Google Scholar 

  • Kang S, Post WM, Nichols JA, Wang D, West TO, Babu S, Singh R, Yadav D, Rathore SS, Raj R, Avasthe R et al (2022) Nanofertilizers for agricultural and environmental sustainability. Chemosphere 292:133451

    Article  Google Scholar 

  • Kroh GE, Pilon M (2020) Regulation of iron homeostasis and use in chloroplasts. Int J Mol Sci 21(9):3395

    Article  CAS  Google Scholar 

  • Kruse T, Gehl C, Geisler M, Lehrke M, Ringel P, Hallier S, Hänsch R, Mendel RR (2010) Identification and biochemical characterization of molybdenum cofactor-binding proteins from Arabidopsis thaliana. J Biol Chem 285(9):6623–6635

    Article  CAS  Google Scholar 

  • Kumar P et al (2018) Ecological risks of nanoparticles: effect on soil microorganisms. Nanomater Plants Algae Microorgan 1:429–452. https://doi.org/10.1016/B978-0-12-811487-2.00019-0

    Article  CAS  Google Scholar 

  • Kumar D, Punetha A, Verma PP, Padalia RC (2022) Micronutrient based approach to increase yield and quality of essential oil in aromatic crops. J Appl Res Med Aromat Plants 26:100361

    CAS  Google Scholar 

  • Lantican MA, Pingali PL, Rajaram S (2003) Is research on marginal lands catching up? The case of unfavourable wheat growing environments⋆. Agric Econ 29(3):353–361

    Google Scholar 

  • Lateef A, Nazir R, Jamil N, Alam S, Shah R, Khan MN, Saleem M (2019) Synthesis and characterization of environmental friendly corncob biochar based nano-composite–A potential slow release nano-fertilizer for sustainable agriculture. Environ Nanotechnol Monit Manag 11:100212

    Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  • Lopez-Lima D, Mtz-Enriquez AI, Carrión G, Basurto-Cereceda S, Pariona N (2021) The bifunctional role of copper nanoparticles in tomato: effective treatment for Fusarium wilt and plant growth promoter. Scientia Horticulturae 277:109810

    Article  CAS  Google Scholar 

  • Luksiene Z, Rasiukeviciute N, Zudyte B, Uselis N (2020) Innovative approach to sunlight activated biofungicides for strawberry crop protection: ZnO nanoparticles. J Photochem Photobiol B: Biol 203:111656

    Article  CAS  Google Scholar 

  • Mahil EIT, Kumar BA (2019) Foliar application of nanofertilizers in agricultural crops–A review. J Farm Sci 32(3):239–249

    Google Scholar 

  • Marschner H (ed) (2011) Marschner’s mineral nutrition of higher plants. Academic Press

    Google Scholar 

  • McClements DJ (2015) Nanoscale nutrient delivery systems for food applications: improving bioactive dispersibility, stability, and bioavailability. J Food Sci 80:N1602–N1611. https://doi.org/10.1111/1750-3841.12919

    Article  CAS  Google Scholar 

  • Mejias JH, Salazar F, Pérez Amaro L, Hube S, Rodriguez M, Alfaro M (2021) Nanofertilizers: a cutting-edge approach to increase nitrogen use efficiency in grasslands [mini review]. Front Environ Sci 9

    Google Scholar 

  • Mujtaba M, Sharif R, Ali Q, Rehman R, Khawar KM (2021) Biopolymer based nanofertilizers applications in abiotic stress (drought and salinity) control. In: Advances in nano-fertilizers and nano-pesticides in agriculture. Woodhead Publishing, pp 85–110

    Chapter  Google Scholar 

  • Munis MFH, Alamer KH, Althobaiti AT, Kamal A, Liaquat F, Haroon U, Ahmed J, Chaudhary HJ, Attia H (2022) ZnO nanoparticle-mediated seed priming induces biochemical and antioxidant changes in chickpea to alleviate fusarium wilt. J Fungi 8(7):753

    Article  Google Scholar 

  • Ndaba B, Roopnarain A, Daramola MO, Adeleke R (2020) Influence of extraction methods on antimicrobial activities of lignin-based materials: a review. Sustain Chem Pharm 18:100342

    Article  Google Scholar 

  • Ndaba B, Roopnarain A, Haripriya RAMA, Maaza M (2022) Biosynthesized metallic nanoparticles as fertilizers: an emerging precision agriculture strategy. J Integr Agric 21(5):1225–1242

    Article  CAS  Google Scholar 

  • Noman M, Shahid M, Ahmed T, Tahir M, Naqqash T, Muhammad S, Song F, Abid HMA, Aslam Z (2020) Green copper nanoparticles from a native Klebsiella pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth. Ecotoxicol Environ Saf 192:110303

    Article  CAS  Google Scholar 

  • Nongbet A, Mishra AK, Mohanta YK, Mahanta S, Ray MK, Khan M et al (2022) Nanofertilizers: a smart and sustainable attribute to modern agriculture. Plants (Basel) 11(19)

    Google Scholar 

  • Novotny JA, Peterson CA (2018) Molybdenum. Adv Nutr 9(3):272–273

    Article  Google Scholar 

  • Nyomora AMS, Brown PH, Pinney K, Polito VS (2000) Foliar application of boron to almond trees affects pollen quality. J Am Soc Hortic Sci 125(2):265–270

    Article  CAS  Google Scholar 

  • Paramo LA, Feregrino-Pérez AA, Guevara R, Mendoza S, Esquivel K (2020) Nanoparticles in agroindustry: applications, toxicity, challenges, and trends. Nanomaterials 10(9):1654

    Article  CAS  Google Scholar 

  • Pérez-Labrada F, López-Vargas ER, Ortega-Ortiz H, Cadenas-Pliego G, Benavides-Mendoza A, Juárez-Maldonado A (2019) Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants 8(6):151

    Article  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR et al (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  • Prăvălie R, Patriche C, Borrelli P, Panagos P, Roșca B, Dumitraşcu M et al (2021) Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ Res 194:110697

    Article  Google Scholar 

  • Prerna DI, Govindaraju K, Tamilselvan S, Kannan M, Vasantharaja R, Chaturvedi S, Shkolnik D (2021) Influence of nanoscale micro-nutrient α-Fe2O3 on seed germination, seedling growth, translocation, physiological effects and yield of rice (Oryza sativa) and maize (Zea mays). Plant Physiol Biochem 162:564–580

    Article  CAS  Google Scholar 

  • Qureshi A, Singh DK, Dwivedi S (2018) Nano-fertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. Int J Curr Microbiol Appl Sci 7(2):3325–3335

    Article  Google Scholar 

  • Rahmati Ishka M, Vatamaniuk OK (2020) Copper deficiency alters shoot architecture and reduces fertility of both gynoecium and androecium in Arabidopsis thaliana. Plant Direct 4(11):e00288

    Article  CAS  Google Scholar 

  • Raliya R, Saharan V, Dimkpa C, Biswas P (2017) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66(26):6487–6503

    Article  Google Scholar 

  • Rasheed A, Seleiman MF, Nawaz M, Mahmood A, Anwar MR, Ayub MA, Aamer M, El-Esawi MA, El-Harty EH, Batool M, Hassan MU (2021) Agronomic and genetic approaches for enhancing tolerance to heat stress in rice: a review. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49(4):12501–12501

    Article  CAS  Google Scholar 

  • Rockström J, Williams J, Daily G, Noble A, Matthews N, Gordon L et al (2017) Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46(1):4–17

    Article  Google Scholar 

  • Salman Khan M, Zaka M, Haider Abbasi B, Rahman L, Shah A (2016) Seed germination and biochemical profile of Silybum marianum exposed to monometallic and bimetallic alloy nanoparticles. IET Nanobiotechnol 10(6):359–366

    Article  Google Scholar 

  • Schmidt SB, Husted S (2019) The biochemical properties of manganese in plants. Plants 8(10):381

    Article  CAS  Google Scholar 

  • Schmidt W, Thomine S, Buckhout TJ (2020) Iron nutrition and interactions in plants. Front Plant Sci 10:1670

    Article  Google Scholar 

  • Schröder P, Mench M, Povilaitis V, Rineau F, Rutkowska B, Schloter M et al (2022) Relaunch cropping on marginal soils by incorporating amendments and beneficial trace elements in an interdisciplinary approach. Sci Total Environ 803:149844

    Article  Google Scholar 

  • Seleiman MF, Aslam MT, Alhammad BA, Hassan MU, Maqbool R, Chattha MU, Khan I, Gitari HI, Uslu OS, Rana R, Battaglia ML (2022) Salinity stress in wheat: effects, mechanisms and management strategies. Phyton 91(4):667

    Article  Google Scholar 

  • Shahbaz M, Ravet K, Peers G, Pilon M (2015) Prioritization of copper for the use in photosynthetic electron transport in developing leaves of hybrid poplar. Front Plant Sci 6:407

    Article  Google Scholar 

  • Shahsavandi F, Eshghi S, Gharaghani A, Ghasemi-Fasaei R, Jafarinia M (2020) Effects of bicarbonate induced iron chlorosis on photosynthesis apparatus in grapevine. Scientia Horticulturae 270:109427

    Article  CAS  Google Scholar 

  • Shalaby TA, Bayoumi Y, Eid Y, Elbasiouny H, Elbehiry F, Prokisch J, El-Ramady H, Ling W (2022) Can nanofertilizers mitigate multiple environmental stresses for higher crop productivity? Sustainability 14(6):3480

    Article  CAS  Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233

    Article  CAS  Google Scholar 

  • Sheoran P, Grewal S, Kumari S, Goel S (2021) Enhancement of growth and yield, leaching reduction in Triticum aestivum using biogenic synthesized zinc oxide nanofertilizer. Biocatal Agric Biotechnol 32:101938

    Article  CAS  Google Scholar 

  • Silaghi-Dumitrescu R, Mich M, Matyas C, Cooper CE (2012) Nitrite and nitrate reduction by molybdenum centers of the nitrate reductase type: computational predictions on the catalytic mechanism. Nitric Oxide 26(1):27–31

    Article  CAS  Google Scholar 

  • Tantawy AS, Salama YAM, El-Nemr MA, Abdel-Mawgoud AMR (2015) Nano silicon application improves salinity tolerance of sweet pepper plants. Int J Chem Tech Res 8(10):11–17

    CAS  Google Scholar 

  • Tapken W, Ravet K, Pilon M (2012) Plastocyanin controls the stabilization of the thylakoid Cu-transporting P-type ATPase PAA2/HMA8 in response to low copper in Arabidopsis. J Biol Chem 287(22):18544–18550

    Article  CAS  Google Scholar 

  • Tejada-Jiménez M, Chamizo-Ampudia A, Galván A, Fernández E, Llamas Á (2013) Molybdenum metabolism in plants. Metallomics 5(9):1191–1203

    Article  Google Scholar 

  • Toksha B, Sonawale VAM, Vanarase A, Bornare D, Tonde S, Hazra C, Kundu D, Satdive A, Tayde S, Chatterjee A (2021) Nanofertilizers: a review on synthesis and impact of their use on crop yield and environment. Environ Technol Innov 24:101986

    Article  CAS  Google Scholar 

  • Tortella G, Rubilar O, Pieretti JC, Fincheira P, de Melo Santana B, Fernández-Baldo MA, Benavides-Mendoza A, Seabra AB (2023) Nanoparticles as a promising strategy to mitigate biotic stress in agriculture. Antibiotics 12(2):338

    Article  CAS  Google Scholar 

  • Tripathi D, Singh M, Pandey-Rai S (2022) Crosstalk of nanoparticles and phytohormones regulate plant growth and metabolism under abiotic and biotic stress. Plant Stress:100107

    Google Scholar 

  • Ventura I, Brunello L, Iacopino S, Valeri MC, Novi G, Dornbusch T, Perata P, Loreti E (2020) Arabidopsis phenotyping reveals the importance of alcohol dehydrogenase and pyruvate decarboxylase for aerobic plant growth. Sci Rep 10(1):1–14

    Article  Google Scholar 

  • Verma KK, Song XP, Joshi A, Tian DD, Rajput VD, Singh M, Arora J, Minkina T, Li YR (2022) Recent trends in nano-fertilizers for sustainable agriculture under climate change for global food security. Nanomaterials 12(1):173

    Article  CAS  Google Scholar 

  • Wang Q, Lu L, Wu X, Li Y, Lin J (2003) Boron influences pollen germination and pollen tube growth in Picea meyeri. Tree Physiol 23(5):345–351

    Article  CAS  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249. https://doi.org/10.2147/IJN.S121956

    Article  CAS  Google Scholar 

  • Wani TA, Masoodi FA, Baba WN, Ahmad M, Rahmanian N, Jafari SM (2019) Nanoencapsulation of agrochemicals, fertilizers, and pesticides for improved plant production. Adv Phytonanotechnol

    Google Scholar 

  • Waqas Mazhar M, Ishtiaq M, Maqbool M, Akram R, Shahid A, Shokralla S et al (2022) Seed priming with iron oxide nanoparticles raises biomass production and agronomic profile of water-stressed flax plants. Agronomy 12(5):982

    Article  CAS  Google Scholar 

  • Yruela I (2013) Transition metals in plant photosynthesis. Metallomics 5(9):1090–1109

    Article  CAS  Google Scholar 

  • Zahedi SM, Moharrami F, Sarikhani S, Padervand M (2020) Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Sci Rep 10(1):17672

    Article  CAS  Google Scholar 

  • Zareabyaneh H, Bayatvarkeshi M (2015) Effects of slow-release fertilizers on nitrate leaching, its distribution in soil profile, N-use efficiency, and yield in potato crop. Environ Earth Sci 74:3385–3393

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ndaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ndaba, B., Akindolire, M., Botha, T.L., Roopnarain, A. (2024). The Use of Nanofertilizers as Micronutrients to Improve Marginal Soils and Crop Production. In: Nciizah, A.D., Roopnarain, A., Ndaba, B., Malobane, M.E. (eds) The Marginal Soils of Africa. Springer, Cham. https://doi.org/10.1007/978-3-031-55185-7_11

Download citation

Publish with us

Policies and ethics