Skip to main content

Obstacle Problems

  • Chapter
  • First Online:
Integro-Differential Elliptic Equations

Part of the book series: Progress in Mathematics ((PM,volume 350))

  • 135 Accesses

Abstract

In this chapter, we study obstacle problems for nonlocal elliptic operators. In order to do so, we first prove the boundary Harnack inequality for such operators in Lipschitz domains, a crucial tool in the regularity theory for free boundary problems. After that, we establish the smoothness of free boundaries near regular points and prove the optimal regularity of solutions. We finish the chapter with a brief discussion of some further results and open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use \(v(x) \le v_h(x)\) and \(v(x+h) \le v_{-h}(x+h) = v(x) +\sigma (|h|)\).

  2. 2.

    This is because, since \(\mathcal {L} u=f\) in \(\{u>0\}\) and \(\mathcal {L} u\geq f\) everywhere, we have \(\mathcal {L} \big ((u(x+h)-u(x)\big )\geq f(x+h)-f(x)\) in \(\{u>0\}\).

  3. 3.

    The set \(\Omega =\{u_\circ >0\}\) is the complement of a convex set, and in particular it satisfies the hypothesis of Theorem 4.4.5.

  4. 4.

    It is interesting to notice that this result fails when \(s=1\), i.e., in case \(\mathcal {L}=-\Delta \).

  5. 5.

    Choose \(\varepsilon \), \(R_\circ \), and \(\eta \) from Proposition 4.4.15, which can then be applied by taking \(\eta > 0\) smaller if necessary thanks to Proposition 4.4.14.

  6. 6.

    In case of the fractional Laplacian \((-\Delta )^s\), one can use the extension property in order to prove such a semiconvexity estimate; see [8, 34, 101].

References

  1. N. Abatangelo, X. Ros-Oton, Obstacle problems for integro-differential operators: higher regularity of free boundaries. Adv. Math. 360, 106931, 61pp (2020)

    Google Scholar 

  2. I. Athanasopoulos, L. Caffarelli, S. Salsa, The structure of the free boundary for lower dimensional obstacle problems. Am. J. Math. 130, 485–498 (2008)

    Article  MathSciNet  Google Scholar 

  3. D. Balagué, J.A. Carrillo, T. Laurent, G. Raoul, Dimensionality of local minimizers of the interaction energy. Arch. Ration. Mech. Anal. 209, 1055–1088 (2013)

    Article  MathSciNet  Google Scholar 

  4. B. Barrios, A. Figalli, X. Ros-Oton, Global regularity for the free boundary in the obstacle problem for the fractional Laplacian. Am. J. Math. 140, 415–447 (2018)

    Article  MathSciNet  Google Scholar 

  5. K. Bogdan, The boundary Harnack principle for the fractional Laplacian. Studia Math. 123, 43–80 (1997)

    Article  MathSciNet  Google Scholar 

  6. K. Bogdan, T. Kulczycki, M. Kwasnicki, Estimates and structure of \(\alpha \)-harmonic functions. Probab. Theory Relat. Fields 140, 345–381 (2008)

    Google Scholar 

  7. K. Bogdan, T. Kumagai, M. Kwasnicki, Boundary Harnack inequality for Markov processes with jumps. Trans. Am. Math. Soc. 367, 477–517 (2015)

    Article  MathSciNet  Google Scholar 

  8. X. Cabré, S. Dipierro, E. Valdinoci, The Bernstein technique for integro-differential operators. Arch. Ration. Mech. Anal. 243, 1597–1652 (2022)

    Article  MathSciNet  Google Scholar 

  9. L. Caffarelli, The regularity of free boundaries in higher dimensions. Acta Math. 139, 155–184 (1977)

    Article  MathSciNet  Google Scholar 

  10. L. Caffarelli, A. Figalli, Regularity of solutions to the parabolic fractional obstacle problem. J. Reine Angew. Math. 680, 191–233 (2013)

    MathSciNet  Google Scholar 

  11. L. Caffarelli, X. Ros-Oton, J. Serra, Obstacle problems for integro-differential operators: regularity of solutions and free boundaries. Invent. Math. 208, 1155–1211 (2017)

    Article  MathSciNet  Google Scholar 

  12. L. Caffarelli, S. Salsa, L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171, 425–461 (2008)

    Article  MathSciNet  Google Scholar 

  13. A. Carbotti, S. Dipierro, E. Valdinoci, Local Density of Solutions to Fractional Equations (De Gruyter, Berlin, 2019)

    Book  Google Scholar 

  14. J.A. Carrillo, M.G. Delgadino, A. Mellet, Regularity of local minimizers of the interaction energy via obstacle problems. Comm. Math. Phys. 343, 747–781 (2016)

    Article  MathSciNet  Google Scholar 

  15. M. Colombo, X. Fernández-Real, X. Ros-Oton, Optimal regularity for the fully nonlinear thin obstacle problem. J. Eur. Math. Soc. (2024), to appear

    Google Scholar 

  16. M. Colombo, L. Spolaor, B. Velichkov, Direct epiperimetric inequalities for the thin obstacle problem and applications. Comm. Pure Appl. Math. 73, 384–420 (2020)

    Article  MathSciNet  Google Scholar 

  17. R. Cont, P. Tankov, Financial modelling with jump processes, in Financial Mathematics Series (Chapman & Hall/CRC, Boca Raton, 2004)

    Google Scholar 

  18. D. De Silva, O. Savin, Boundary Harnack estimates in slit domains and applications to thin free boundary problems. Rev. Mat. Iberoam. 32, 891–912 (2016)

    Article  MathSciNet  Google Scholar 

  19. G. Duvaut, J.L. Lions, Inequalities in mechanics and physics, in Grundlehren der Mathematischen Wissenschaften, vol. 219 (Springer, Berlin, 1976)

    Book  Google Scholar 

  20. L.C. Evans, An Introduction to Stochastic Differential Equations (American Mathematical Society, New York, 2013)

    Book  Google Scholar 

  21. X. Fernández-Real, The thin obstacle problem: a survey. Publ. Mat. 66, 3–55 (2022)

    Article  MathSciNet  Google Scholar 

  22. X. Fernández-Real, Y. Jhaveri, On the singular set in the thin obstacle problem: higher order blow-ups and the very thin obstacle problem. Anal. PDE 14, 1599–1669 (2021)

    Article  MathSciNet  Google Scholar 

  23. X. Fernández-Real, X. Ros-Oton, The obstacle problem for the fractional Laplacian with critical drift. Math. Ann. 371, 1683–1735 (2018)

    Article  MathSciNet  Google Scholar 

  24. X. Fernández-Real, X. Ros-Oton, Free boundary regularity for almost every solution to the Signorini problem. Arch. Ration. Mech. Anal. 240, 419–466 (2021)

    Article  MathSciNet  Google Scholar 

  25. X. Fernández-Real, X. Ros-Oton, Regularity Theory for Elliptic PDE. Zurich Lectures in Advanced Mathematics (EMS Books, New York, 2022)

    Google Scholar 

  26. X. Fernández-Real, C. Torres-Latorre, Generic regularity of free boundaries for the thin obstacle problem. Adv. Math. 433, 109323 (2023)

    Article  MathSciNet  Google Scholar 

  27. A. Figalli, X. Ros-Oton, J. Serra, Generic regularity of free boundaries for the obstacle problem. Publ. Math. Inst. Hautes Études Sci. 132, 181–292 (2020)

    Article  MathSciNet  Google Scholar 

  28. A. Figalli, X. Ros-Oton, J. Serra, Regularity theory for nonlocal obstacle problems with critical and subcritical scaling, preprint arXiv (2023)

    Google Scholar 

  29. M. Focardi, E. Spadaro, On the measure and the structure of the free boundary of the lower dimensional obstacle problem. Arch. Ration. Mech. Anal. 230, 125–184 (2018)

    Article  MathSciNet  Google Scholar 

  30. F. Franceschini, J. Serra, Free boundary partial regularity in the thin obstacle problem. Comm. Pure Appl. Math. 77, 630–669 (2024)

    Article  MathSciNet  Google Scholar 

  31. N. Garofalo, A. Petrosyan, Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem. Invent. Math. 177, 415–461 (2009)

    Article  MathSciNet  Google Scholar 

  32. N. Garofalo, X. Ros-Oton, Structure and regularity of the singular set in the obstacle problem for the fractional Laplacian. Rev. Mat. Iberoam. 35, 1309–1365 (2019)

    Article  MathSciNet  Google Scholar 

  33. D. Jerison, C. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains. Adv. Math. 46, 80–147 (1982)

    Article  MathSciNet  Google Scholar 

  34. Y. Jhaveri, R. Neumayer, Higher regularity of the free boundary in the obstacle problem for the fractional Laplacian. Adv. Math. 311, 748–795 (2017)

    Article  MathSciNet  Google Scholar 

  35. H. Koch, A. Petrosyan, W. Shi, Higher regularity of the free boundary in the elliptic Signorini problem. Nonlinear Anal. 126, 3–44 (2015)

    Article  MathSciNet  Google Scholar 

  36. H. Koch, A. Rüland, W. Shi, Higher regularity for the fractional thin obstacle problem. New York J. Math. 25, 745–838 (2019)

    MathSciNet  Google Scholar 

  37. R. Merton, Option pricing when the underlying stock returns are discontinuous. J. Finan. Econ. 5, 125–144 (1976)

    Article  Google Scholar 

  38. A. Petrosyan, H. Shahgholian, N. Uraltseva, Regularity of free boundaries in obstacle-type problems, in Graduate Studies in Mathematics, vol. 136 (American Mathematical Society, Providence, 2012)

    Book  Google Scholar 

  39. X. Ros-Oton, J. Serra, The boundary Harnack principle for nonlocal elliptic equations in nondivergence form. Potential Anal. 51, 315–331 (2019)

    Article  MathSciNet  Google Scholar 

  40. X. Ros-Oton, C. Torres-Latorre, M. Weidner, Semiconvexity estimates for nonlinear integro-differential equations, preprint arXiv (2023)

    Google Scholar 

  41. X. Ros-Oton, M. Weidner, Obstacle problems for nonlocal operators with singular kernels, preprint arXiv (2023)

    Google Scholar 

  42. A. Rüland, W. Shi, Higher regularity for the Signorini problem for the homogeneous, isotropic Lamé system. Nonlinear Anal. 217, 112762 (2022)

    Article  Google Scholar 

  43. O. Savin, H. Yu, Contact points with integer frequencies in the thin obstacle problem. Comm. Pure Appl. Math. 76, 4048–4074 (2023)

    Article  MathSciNet  Google Scholar 

  44. S. Serfaty, Coulomb Gases and Ginzburg-Landau Vortices. Zurich Lectures in Advanced Mathematics (EMS Books, New York, 2015)

    Google Scholar 

  45. A. Signorini, Questioni di elasticità non linearizzata e semilinearizzata. Rend. Mat. e Appl. 18, 95–139 (1959)

    MathSciNet  Google Scholar 

  46. L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60, 67–112 (2007)

    Article  MathSciNet  Google Scholar 

  47. R. Song, J.-M. Wu, Boundary Harnack principle for symmetric stable processes. J. Funct. Anal. 168, 403–427 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernández-Real, X., Ros-Oton, X. (2024). Obstacle Problems. In: Integro-Differential Elliptic Equations. Progress in Mathematics, vol 350. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-54242-8_4

Download citation

Publish with us

Policies and ethics