Skip to main content
Log in

The Boundary Harnack Principle for Nonlocal Elliptic Operators in Non-divergence Form

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We prove a boundary Harnack inequality for nonlocal elliptic operators L in non-divergence form with bounded measurable coefficients. Namely, our main result establishes that if Lu1 = Lu2 = 0 in Ω ∩ B1, u1 = u2 = 0 in B1 ∖Ω, and u1,u2 ≥ 0 in ℝn, then u1 and u2 are comparable in B1/2. The result applies to arbitrary open sets Ω. When Ω is Lipschitz, we show that the quotient u1/u2 is Hölder continuous up to the boundary in B1/2. These results will be used in forthcoming works on obstacle-type problems for nonlocal operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bass, R., Burdzy, K.: The boundary Harnack principle for non-divergence form elliptic operators. J. Lond. Math. Soc. 50, 157–169 (1994)

    Article  Google Scholar 

  2. Bass, R., Levin, D.: Harnack inequalities for jump processes. Potential Anal. 17, 375–382 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bogdan, K.: The boundary Harnack principle for the fractional Laplacian. Studia Math. 123, 43–80 (1997)

    Article  MathSciNet  Google Scholar 

  4. Bogdan, K.: Representation of α-harmonic functions in Lipschitz domains. Hiroshima Math. J. 29, 227–243 (1999)

    Article  MathSciNet  Google Scholar 

  5. Bogdan, K., Kulczycki, T., Kwasnicki, M.: Estimates and structure of α-harmonic functions. Probab. Theory Related Fields 140, 345–381 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bogdan, K., Kumagai, T., Kwasnicki, M.: Boundary Harnack inequality for Markov processes with jumps. Trans. Amer. Math. Soc. 367, 477–517 (2015)

    Article  MathSciNet  Google Scholar 

  7. Caffarelli, L., Cabré, X.: Fully nonlinear elliptic equations. AMS Colloquium Publ. 43 (1995)

  8. Caffarelli, L., Ros-Oton, X., Serra, J.: Obstacle problems for integro-differential operators: regularity of solutions and free boundaries. Invent. Math. 208, 1155–1211 (2017)

    Article  MathSciNet  Google Scholar 

  9. Caffarelli, L., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171, 425–461 (2008)

    Article  MathSciNet  Google Scholar 

  10. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62, 597–638 (2009)

    Article  MathSciNet  Google Scholar 

  11. Caffarelli, L., Silvestre, L.: The Evans-Krylov theorem for nonlocal fully nonlinear equations. Ann. Math. 174, 1163–1187 (2011)

    Article  MathSciNet  Google Scholar 

  12. Chang-Lara, H., Davila, G.: Hölder estimates for nonlocal parabolic equations with critical drift. J. Diff. Eqs. 260, 4237–4284 (2016)

    Article  Google Scholar 

  13. Chen, Z.-H., Song, R.: Martin boundary and integral representation for harmonic functions of symmetric stable processes. J. Funct Anal. 159, 267–294 (1998)

    Article  MathSciNet  Google Scholar 

  14. Fernandez-Real, X., Ros-Oton, X.: The obstacle problem for the fractional Laplacian with critical drift, Math. Ann., in press (2017)

  15. Ros-Oton, X., Serra, J.: Boundary regularity for fully nonlinear integro-differential equations. Duke Math. J. 165, 2079–2154 (2016)

    Article  MathSciNet  Google Scholar 

  16. Ros-Oton, X., Serra, J.: Boundary regularity estimates for nonlocal elliptic equations in c 1 and c 1,α domains. Ann. Mat. Pura Appl. 196, 1637–1668 (2017)

    Article  MathSciNet  Google Scholar 

  17. Silvestre, L.: Hölder estimates for solutions of integro differential equations like the fractional Laplacian. Indiana Univ. Math. J. 55, 1155–1174 (2006)

    Article  MathSciNet  Google Scholar 

  18. Song, R., Wu, J.-M.: Boundary Harnack principle for symmetric stable processes. J. Funct. Anal. 168, 403–427 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Mateusz Kwaśnicki for his valuable comments on a previous version of this paper, as well as for pointing out to us the references [4, 13].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Ros-Oton.

Additional information

XR was supported by NSF grant DMS-1565186. Both authors were supported by MINECO grant MTM2014-52402-C3-1-P (Spain)

Appendix: Subsolution in Lipschitz Domains

Appendix: Subsolution in Lipschitz Domains

We prove here a lower bound for positive solutions u in Lipschitz domains, namely ucd2sγ in Ω for some small γ > 0. This is stated in Lemma 4.5, which we prove below.

For this, we need to construct the following subsolution.

Lemma A.1

Lets ∈ (0, 1), andeSn− 1. Givenη > 0, there is𝜖 > 0 dependingonly on n, s,ηandellipticity constants such that the following holds.

Define

$${\Phi}(x) := \left( e\cdot x- \eta |x| \left( 1- \frac{(e\cdot x)^{2}}{|x|^{2}} \right)\right)_{+}^{2s-\epsilon}$$

Then,

$$\left\{\begin{array}{ll} M^{-} {\Phi} \ge 0 \quad & \text{in }\mathcal C_{\eta} \\ {\Phi} = 0 \quad & \text{in }\mathbb{R}^{n} \setminus \mathcal C_{\eta} \end{array}\right. $$

where\(\mathcal C_{\eta }\)is the cone defined by

$$\mathcal C_{\eta}: = \left\{ x \in \mathbb{R}^{n}\ : e\cdot \frac{x}{|x|} > \eta \left( 1 - \left( e\cdot \frac{ x }{|x|} \right)^{2}\right) \right\}.$$

The constant 𝜖depends only on η, s, and ellipticity constants.

In particular Φ satisfies M Φ ≥ 0 in all ofn.

Proof

By homogeneity it is enough to prove that, for 𝜖 small enough, we have M Φ ≥ 1 on points belonging to \(e + \partial \mathcal { C}_{\eta }\), since all the positive dilations of this set with respect to the origin cover the interior of \(\mathcal {\tilde C}_{\eta }\).

Let thus \(P\in \partial \mathcal { C}_{\eta }\), that is,

$$e\cdot P- \eta \left( |P| - \frac{(e\cdot P)^{2}}{|P|} \right) = 0. $$

Consider

$$\begin{array}{ll} {\Phi}_{P}(x) &:= {\Phi}(P+e+x) \\ &= \left( e\cdot (P+e+x)- \eta \left( |P+e+x| - \frac{(e\cdot (P+e+x))^{2}}{|P+e+x|} \right)\right)_{+}^{2s-\epsilon} \\ &= \left( 1 +e\cdot x- \eta \left( |P+e+x| -|P|- \frac{(e\cdot (P+e+x))^{2}}{|P+e+x|} +\frac{(e\cdot P)^{2}}{|P|} \right)\right)_{+}^{2s-\epsilon} \\ &=\left( 1 +e\cdot x- \eta \psi_{P}(x) \right)_{+}^{s+\epsilon}, \end{array}$$

where we define

$$\psi_{P}(x) := |P+e+x| -|P|- \frac{(e\cdot (P+e+x))^{2}}{|P+e+x|} +\frac{(e\cdot P)^{2}}{|P|} .$$

Note that the functions ψP satisfy

$$|\nabla \psi_{P}(x)| \le C \quad \text{in } \mathbb{R}^{n} \setminus \{ -P-e\}, $$

and

$$ |D^{2} \psi_{P}(x)| \le C \quad \text{for }x \in B_{1/2}, $$
(A.1)

where C does not depend on P (recall that |e| = 1).

Now for fixed \(\tilde e \in \partial \mathcal { C}_{\eta }\cap \partial B_{1}\) let us compute

$$\lim_{t\uparrow +\infty} \psi_{t\tilde e}(x) = \lim_{t\uparrow +\infty} (|t\tilde e +e+x|-|t\tilde e|) - \lim_{t\uparrow +\infty} \left( \frac{(e\cdot (t\tilde e +e+x))^{2}}{|t\tilde e +e+x|} -\frac{(e\cdot t \tilde e)^{2}}{|t\tilde e |} \right). $$

On the one hand, we have

$$\lim_{t\uparrow +\infty} (|\tilde e t+e+x|-|\tilde e t|) = \tilde e\cdot(e+x). $$

On the other hand to compute for \(f_{t}(y) := \frac {(e\cdot (t\tilde e + y))^{2}}{|t\tilde e +y|} \) we have

$$\partial_{y_{i}} f_{t}(y) = \frac{2(e\cdot (t\tilde e+ y)) e_{i}}{|t\tilde e +y|} - \frac{(e\cdot (t\tilde e + y))^{2}}{|t\tilde e +y|^{3}} (t\tilde e +y )_{i} $$

and hence

$$\lim_{t\uparrow +\infty} \partial_{y_{i}} f_{t}(y) = \left( 2(e\cdot \tilde e) e_{i}- (e\cdot\tilde e)^{2} \tilde e_{i}\right). $$

Therefore,

$$\lim_{t\uparrow +\infty} \left( \frac{(e\cdot (t\tilde e +e+x))^{2}}{|t\tilde e +e+x|}-\frac{(e\cdot t \tilde e)^{2}}{|t\tilde e |}\right) = \left( 2(e\cdot \tilde e)e - (e\cdot\tilde e)^{2}\tilde e\right) \cdot(e+x) . $$

We have thus found

$$\lim_{t\uparrow +\infty} \psi_{P}(x) = \left( \tilde e-2(e\cdot \tilde e)e + (e\cdot\tilde e)^{2}\tilde e\right)\cdot(e+x) $$

and

$$\lim_{t\uparrow +\infty} \left( 1+e\cdot x-\eta \psi_{P}(x)\right) = \left( e -\eta \tilde e + 2\eta(e\cdot \tilde e)e-\eta (e\cdot\tilde e)^{2}\tilde e\right)\cdot(e+x) $$

Note that for δ small enough (depending only on η), if we define

$$\mathcal C_{\tilde e}:= \left\{x\in \mathbb{R}^{n} \ :\ \frac{x+e}{|x+e|}\cdot \frac{e-(e\cdot\tilde e)\tilde e}{|e-(e\cdot\tilde e)\tilde e|} \ge (1-\delta)\right\} $$

satisfies

$$ \lim_{t\uparrow +\infty} \left( 1+e\cdot x-\eta \psi_{P}(x)\right) \ge c|x|\quad \text{for all }x\in \mathcal C_{\tilde e} $$
(A.2)

where c > 0. Indeed, the vector \(e^{\prime } :=e-(e\cdot \tilde e)\tilde e\) is perpendicular to \(\tilde e\) and has positive scalar product with e. Thus, we have

$$\left( e -\eta \tilde e + 2\eta(e\cdot \tilde e)e-\eta (e\cdot\tilde e)^{2}\tilde e\right)\cdot e^{\prime}>0 $$

Let us show now that for ε > 0 small enough the function ΦP satisfies

$$ M^{-}{\Phi}_{P}(0) \ge 1. $$
(A.3)

We first prove (A.3) in the case |P| ≥ R with R large enough. Indeed let \(P= t\tilde e\) for \(t\uparrow +\infty \) and \(\tilde e \in \partial \mathcal { C}_{\eta }\cap \partial B_{1}\). Let us denote

$$\delta^{2} u(x,y) = \frac{u(x+y)+u(x-y)}{2}-u(x). $$

Using (A.1), and Eq. A.2, and ΦP ≥ 0 we obtain

$$\begin{array}{ll} \underset{t\to \infty}\lim M^{-}{\Phi}_{P} (0) &\ge {\int}_{\mathbb{R}^{n}} \left( (\delta^{2} u)_{+} \frac{\lambda}{|y|^{n + 2s}} - (\delta^{2} u)_{-} \frac{{\Lambda}}{|y|^{n + 2s}}\right) \,dy \\ &\ge {\int}_{\mathcal C_{\tilde e}} (c|y| -C)_{+}^{2s-\epsilon}\,\frac{dy}{|y|^{n + 2s}} - C {\int}_{\mathbb{R}^{n}} \min\{1,|y|^{2}\} \frac{dy}{|y|^{n + 2s}} \\ &\ge \frac{c}{\epsilon}-C. \end{array} $$

Thus Eq. A.3 follows for |P|≥ R with R large, provided that 𝜖 is taken small enough.

We now concentrate in the case |P| < R. In this case we use that, taking δ > 0 small enough (depending on η) and defining the cone

$$\mathcal C_{e}:= \left\{x\in \mathbb{R}^{n} \ :\ \frac{x}{|x|}\cdot e \ge (1-\delta)\right\} $$

we have

$$e\cdot (P+e+x)- \eta \left( |P+e+x| - \frac{(e\cdot (P+e+x))^{2}}{|P+e+x|} \ge c |x|\right) $$

for \(x\in \mathcal C_{e}\) with |x| ≥ L with L large enough (depending on R).

Thus, reasoning similarly as above but now integrating in \(\mathcal C_{e} \cap \{ |x|>L\}\) instead of on \(\mathcal C_{\tilde e}\) we prove (A.3) also in the case PR, provided that 𝜖 is small enough. Therefore the lemma is proved. □

Finally, we give the:

Proof of Lemma 4.5

Note that we only need to prove the conclusion of the Lemma for r > 0 small enough, since the conclusion for non-small r follows from the interior Harnack inequality.

Recall that \({\Omega }\subset \mathbb {R}^{n}\) is assumed to Lipschitz domain, with 0 ∈ Ω. Then, for some eSn− 1, η > 0 (typically large), and r0 > 0 depending on (the Lipschitz regularity of) Ω we have

$$\tilde{\mathcal C}_{\eta} \cap B_{2r_{0}}\subset{\Omega} $$

where \(\tilde {\mathcal C}_{\eta }\) is the cone of Lemma A.1, which is very sharp for η large.

Let Φ and 𝜖 > 0 be the subsolution and the constant in Lemma A.1. We now take

$$\tilde {\Phi} = \left( {\Phi} -(|x|/r_{0})^{2} \right) \chi_{2r_{0}}. $$

By Lemma (A.1) we have

$$M^{-}\tilde {\Phi} \ge - C \quad \text{in }B_{r_{0}} $$

while clearly \(\tilde {\Phi }\le 0\) outside \(B_{r_{0}}\).

Now we take observe that, for c1 > 0 small enough we have

$$M^{-}(c_{1}\tilde{\Phi} + \chi_{D_{1}}) \ge -c_{1} C + c \ge c/2>0 $$

in \(B_{r_{0}}\) — not that \(B_{r_{0}}\cap D_{1} = \varnothing \) since r0 is small.

Then, taking δ ∈ (0, c/2) we have

$$M^{-}(u-c_{1}\tilde{\Phi} + \chi_{D_{1}}) \le 0 \quad \text{ in }B_{r_{0}} $$

while

$$u-c_{1}\tilde{\Phi} + \chi_{D_{1}} \ge 0-c_{1}\tilde{\Phi} + 0 \ge 0\quad\text{in}(\mathbb{R}^{n}\setminus B_{r_{0}})\setminus {D_{1}} $$

and

$$u-c_{1}\tilde{\Phi} + \chi_{D_{1}} = (u-1)-c_{1}\tilde{\Phi} \ge 0-c_{1}\tilde{\Phi} \ge 0\quad \text{in } (\mathbb{R}^{n}\setminus B_{r_{0}})\cap {D_{1}}. $$

Then, by the maximum principle we obtain

$$u-c_{1}\tilde{\Phi} = u-c_{1}\tilde{\Phi} + \chi_{D_{1}} \ge 0 \quad \text{in } B_{r_{0}} $$

and hence

$$u(x)\ge c_{1}{\Phi}(x) - C |x|^{2} \quad\text{for }x\in B_{r_{0}} $$

which clearly implies the Lemma (taking γ = 𝜖). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ros-Oton, X., Serra, J. The Boundary Harnack Principle for Nonlocal Elliptic Operators in Non-divergence Form. Potential Anal 51, 315–331 (2019). https://doi.org/10.1007/s11118-018-9713-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-018-9713-7

Keywords

Mathematics Subject Classification (2010)

Navigation